Neto João, Dahiya Abhishek Singh, Dahiya Ravinder
James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.
Nano Converg. 2025 Jan 18;12(1):2. doi: 10.1186/s40580-024-00472-z.
The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot. This underlines the need for biological skin like processing in the e-skin. Herein, we present multi-gate field-effect transistors (v-FET) having capacitively coupled floating gate (FG) to mimic some of the neural functions. The v-FETs are obtained by deterministic assembly of ZnO nanowires on a flexible substrate using contactless dielectrophoresis method, followed metallization using conventional microfabrication steps. The spatial summation of two presynaptic inputs (applied at multiple control gates) of the transistor confirm their neuron-like response. The temporal summation (such as paired-pulse facilitation) by presented v-FETs further confirm their neuron-like mimicking with one presynaptic input. The temporal and spatial summation functions, demonstrated by the v-FET presented here, could open interesting new avenues for development of neuromorphic electronic skin (v-skin) with possibility of biological-skin like distributed computing.
生物皮肤中的感受器对触觉数据进行编码的有趣方式,激发了具有脑启发式或神经形态计算功能的电子皮肤(e-skin)的发展。从局部(靠近传感器)数据处理开始,有一种内在机制在起作用,有助于缩小数据量。当人们考虑到大面积电子皮肤(如机器人的全身皮肤)中大量传感器产生的海量数据时,这一点尤其具有吸引力。这凸显了在电子皮肤中进行类似生物皮肤处理的必要性。在此,我们展示了具有电容耦合浮栅(FG)的多栅场效应晶体管(v-FET),以模仿一些神经功能。通过使用非接触介电泳方法在柔性基板上确定性组装ZnO纳米线,然后采用传统微加工步骤进行金属化,从而获得v-FET。晶体管的两个突触前输入(施加在多个控制栅极上)的空间总和证实了它们类似神经元的响应。本文展示的v-FET的时间总和(如双脉冲易化)进一步证实了它们在一个突触前输入下类似神经元的模仿。这里展示的v-FET所表现出的时间和空间总和功能,可能为神经形态电子皮肤(v-skin)的发展开辟有趣的新途径,并有可能实现类似生物皮肤的分布式计算。