Suppr超能文献

通过连续单细胞筛选探索环境微真菌多样性

Exploring Environmental Microfungal Diversity Through Serial Single Cell Screening.

作者信息

Mariz Joana, Nawaz Ali, Bösch Yvonne, Wurzbacher Christian

机构信息

Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany.

Department of Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Siegen, Germany.

出版信息

Mol Ecol Resour. 2025 Apr;25(3):e14055. doi: 10.1111/1755-0998.14055. Epub 2025 Jan 20.

Abstract

Known for its remarkable diversity and ecological importance, the fungal kingdom remains largely unexplored. In fact, the number of unknown and undescribed fungi is predicted to exceed the number of known fungal species by far. Despite efforts to uncover these dark fungal taxa, we still face inherent sampling biases and methodological limitations. Here, we present a framework that combines taxonomic knowledge, molecular biology and data processing to explore the fungal biodiversity of enigmatic aquatic fungal lineages. Our work is based on serial screening of environmental fungal cells to approach unknown fungal taxa. Microscopic documentation is followed by DNA analysis of laser micro-dissected cells, coupled with a ribosomal operon barcoding step realised by long-read sequencing, followed by an optional whole genome sequencing step. We tested this approach on a range of aquatic fungal cells mostly belonging to the ecological group of aquatic hyphomycetes derived from environmental samples. From this initial screening, we were able to identify 60 potentially new fungal taxa in the target dataset. By extending this methodology to other fungal lineages associated with different habitats, we expect to increasingly characterise the molecular barcodes of dark fungal taxa in diverse environmental samples. This work offers a promising solution to the challenges posed by unknown and unculturable fungi and holds the potential to be applied to the diverse lineages of undescribed microeukaryotes.

摘要

真菌界以其显著的多样性和生态重要性而闻名,但在很大程度上仍未被探索。事实上,未知和未描述的真菌数量预计远远超过已知真菌物种的数量。尽管人们努力揭示这些神秘的真菌类群,但我们仍然面临着固有的采样偏差和方法上的局限性。在这里,我们提出了一个框架,将分类学知识、分子生物学和数据处理结合起来,以探索神秘的水生真菌谱系的真菌生物多样性。我们的工作基于对环境真菌细胞的系列筛选来研究未知的真菌类群。在显微镜记录之后,对激光显微切割的细胞进行DNA分析,并结合长读测序实现的核糖体操纵子条形码步骤,随后是一个可选的全基因组测序步骤。我们在一系列主要属于来自环境样本的水生丝孢菌生态组的水生真菌细胞上测试了这种方法。通过初步筛选,我们能够在目标数据集中识别出60个潜在的新真菌类群。通过将这种方法扩展到与不同栖息地相关的其他真菌谱系,我们期望越来越多地描绘出不同环境样本中神秘真菌类群的分子条形码。这项工作为未知和不可培养真菌带来的挑战提供了一个有前景的解决方案,并有可能应用于未描述的微真核生物的不同谱系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5493/11887600/bdc928c650b4/MEN-25-e14055-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验