Suppr超能文献

使用扩张重参数化卷积预测药物与靶点的相互作用。

Predicting drug and target interaction with dilated reparameterize convolution.

作者信息

Deng Moping, Wang Jian, Zhao Yiming, Zhao Yongjia, Cao Hao, Wang Zhuo

机构信息

Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, 110016, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Sci Rep. 2025 Jan 20;15(1):2579. doi: 10.1038/s41598-025-86918-8.

Abstract

Predicting drug-target interaction (DTI) stands as a pivotal and formidable challenge in pharmaceutical research. Many existing deep learning methods only learn the high-dimensional representation of ligands and targets on a small scale. However, it is difficult for the model to obtain the potential law of combining pockets or multiple binding sites on a large scale. To address this lacuna, we designed a large-kernel convolutional block for extracting large-scale sequence information and proposed a novel DTI prediction framework, named Rep-ConvDTI. The reparameterization method is introduced to help large-kernel convolutions capture small-scale information. We have also developed a gated attention mechanism to more efficiently characterize the interaction of drugs and targets. Extensive experiments demonstrate that Rep-ConvDTI achieves the most competitive performance against state-of-the-art baselines on the three benchmark datasets. Furthermore, we validated the potential of Rep-ConvDTI as a drug screening tool through model interpretative studies and drug screening experiments with cystathionine-β-synthase.

摘要

预测药物-靶点相互作用(DTI)是药物研究中一项关键且艰巨的挑战。许多现有的深度学习方法仅在小尺度上学习配体和靶点的高维表示。然而,模型很难在大尺度上获取结合口袋或多个结合位点的潜在结合规律。为了解决这一空白,我们设计了一个大内核卷积块来提取大规模序列信息,并提出了一种名为Rep-ConvDTI的新型DTI预测框架。引入了重参数化方法来帮助大内核卷积捕获小尺度信息。我们还开发了一种门控注意力机制,以更有效地表征药物与靶点的相互作用。大量实验表明,在三个基准数据集上,Rep-ConvDTI相对于最先进的基线方法取得了最具竞争力的性能。此外,我们通过模型解释性研究和针对胱硫醚-β-合酶的药物筛选实验,验证了Rep-ConvDTI作为药物筛选工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20bb/11747116/cddcc202a4b5/41598_2025_86918_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验