Suppr超能文献

作物细胞质雄性不育与杂种优势育种的过去与未来

Past and future of cytoplasmic male sterility and heterosis breeding in crop plants.

作者信息

Bohra Abhishek, Tiwari Abha, Pareek Shalini, Joshi Rohit, Satheesh Naik S J, Kumari Khushbu, Verma Ram Lakhan, Parihar Ashok K, Patil Prakash G, Dixit Girish P

机构信息

ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India.

ICAR-National Institute of Biotic Stresses Management, Baronda, Chhattisgarh, 493225, India.

出版信息

Plant Cell Rep. 2025 Jan 22;44(2):33. doi: 10.1007/s00299-024-03414-5.

Abstract

Plant breeding needs to embrace genetic innovations to ensure stability in crop yields under fluctuating climatic conditions. Development of commercial hybrid varieties has proven to be a sustainable and economical alternative to deliver superior yield, quality and resistance with uniformity in a number of food crops. Cytoplasmic male sterility (CMS), a maternally inherited inability to produce functional pollen, facilitates a three-line system for efficient hybrid seed production strategies in crops. The CMS system has illustrated its potential as a robust pollination control mechanism to support the billion-dollar seed industry. In plants, CMS arises due to a genomic conflict between mitochondrial open reading frames (orfs) and nuclear-encoding restoration-of-fertility (Rf) genes, leading to floral abnormalities and pollen sterility. Research on pollen sterility and fertility restoration provides deeper insights into cytoplasmic-nuclear interplay in plants and elucidates key molecular targets for hybrid breeding in crops. More recently, programmable gene editing (e.g., TALEN, CRISPR-Cas) has emerged as a promising tool to functionally validate CMS and Rf genes and obviate the need for pollen donors or Rf-genes for hybrid breeding. Modern genomic prediction models have allowed establishment of high-performing heterotic groups and patterns for sustaining long-term gain in hybrid breeding. This article reviews latest discoveries elucidating the molecular mechanisms behind CMS and fertility restoration in plants. We then present our perspective on how evolving genetic technologies are contributing to advance fundamental knowledge of the CMS-Rf genetic system for producing crop hybrids with high heterosis.

摘要

植物育种需要采用基因创新技术,以确保在气候条件波动的情况下作物产量的稳定性。事实证明,开发商业杂交品种是一种可持续且经济的选择,能够在多种粮食作物中实现高产、优质和抗性的统一。细胞质雄性不育(CMS)是一种母系遗传的无法产生功能性花粉的现象,它为作物高效杂交种子生产策略提供了一种三系系统。CMS系统已展现出其作为强大授粉控制机制的潜力,以支持价值数十亿美元的种子产业。在植物中,CMS是由于线粒体开放阅读框(orfs)与核编码育性恢复(Rf)基因之间的基因组冲突而产生的,导致花异常和花粉不育。对花粉不育和育性恢复的研究为植物细胞质 - 核相互作用提供了更深入的见解,并阐明了作物杂交育种的关键分子靶点。最近,可编程基因编辑(例如,TALEN、CRISPR - Cas)已成为一种有前景的工具,可用于功能验证CMS和Rf基因,并消除杂交育种对花粉供体或Rf基因的需求。现代基因组预测模型有助于建立高性能的杂种优势群和模式,以在杂交育种中维持长期增益。本文综述了阐明植物中CMS和育性恢复背后分子机制的最新发现。然后,我们阐述了不断发展的基因技术如何有助于推进CMS - Rf遗传系统的基础知识,以培育具有高杂种优势的作物杂交种。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验