Suppr超能文献

CDCG-UNet:基于扩张通道门控注意力U-Net模型的混沌优化辅助脑肿瘤分割

CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.

作者信息

Bhagyalaxmi K, Dwarakanath B

机构信息

Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.

Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.

出版信息

Neuroinformatics. 2025 Jan 22;23(2):12. doi: 10.1007/s12021-024-09701-6.

Abstract

Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost. To address these challenges, a novel U-Net model for tumour segmentation in magnetic resonance images (MRI) is proposed. Initially, images are claimed from the dataset and pre-processed with the Probabilistic Hybrid Wiener filter (PHWF) to remove unwanted noise and improve image quality. To reduce model complexity, the pre-processed images are submitted to a feature extraction procedure known as 3D Convolutional Vision Transformer (3D-VT). To perform the segmentation approach using chaotic optimization assisted Dilated Channel Gate attention U-Net (CDCG-UNet) model to segment brain tumour regions effectively. The proposed approach segments tumour portions as whole tumour (WT), tumour Core (TC), and Enhancing Tumour (ET) positions. The optimization loss function can be performed using the Chaotic Harris Shrinking Spiral optimization algorithm (CHSOA). The proposed CDCG-UNet model is evaluated with three datasets: BRATS 2021, BRATS 2020, and BRATS 2023. For the BRATS 2021 dataset, the proposed CDCG-UNet model obtained a dice score of 0.972 for ET, 0.987 for CT, and 0.98 for WT. For the BRATS 2020 dataset, the proposed CDCG-UNet model produced a dice score of 98.87% for ET, 98.67% for CT, and 99.1% for WT. The CDCG-UNet model is further evaluated using the BRATS 2023 dataset, which yields 98.42% for ET, 98.08% for CT, and 99.3% for WT.

摘要

脑肿瘤是最致命且最引人注目的癌症类型之一,影响儿童和成人。脑肿瘤识别的主要缺点之一是诊断延迟和脑肿瘤检测设备成本高昂。大多数现有方法使用机器学习算法来解决问题,但它们存在诸如准确率低、损失高和计算成本高的缺点。为应对这些挑战,提出了一种用于磁共振图像(MRI)中肿瘤分割的新型U-Net模型。首先,从数据集中获取图像,并使用概率混合维纳滤波器(PHWF)进行预处理,以去除不需要的噪声并提高图像质量。为降低模型复杂度,将预处理后的图像提交给一种称为3D卷积视觉Transformer(3D-VT)的特征提取过程。为使用混沌优化辅助扩张通道门注意力U-Net(CDCG-UNet)模型执行分割方法,以有效分割脑肿瘤区域。所提出的方法将肿瘤部分分割为全肿瘤(WT)、肿瘤核心(TC)和强化肿瘤(ET)位置。优化损失函数可使用混沌哈里斯收缩螺旋优化算法(CHSOA)执行。所提出的CDCG-UNet模型使用三个数据集进行评估:BRATS 2021、BRATS 2020和BRATS 2023。对于BRATS 2021数据集,所提出의 CDCG-UNet模型在ET方面获得了0.972的骰子分数,在CT方面获得了0.987,在WT方面获得了0.98。对于BRATS 2020数据集,所提出的CDCG-UNet模型在ET方面产生了得分98.87%,在CT方面产生了98.67%,在WT方面产生了99.1%。使用BRATS 2023数据集对CDCG-UNet模型进行进一步评估,在ET方面产生了98.42%,在CT方面产生了98.08%,在WT方面产生了99.3%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验