Suppr超能文献

HiCForecast:用于时空Hi-C数据预测的动态网络光流估计算法。

HiCForecast: dynamic network optical flow estimation algorithm for spatiotemporal Hi-C data forecasting.

作者信息

Pinchuk Dmitry, Chowdhury H M A Mohit, Pandeya Abhishek, Oluwadare Oluwatosin

机构信息

Department of Computer Science, University of Wisconsin-Madison, Madison, WI 53706, United States.

Department of Computer Science, University of Colorado, Colorado Springs, CO 80918, United States.

出版信息

Bioinformatics. 2025 Feb 4;41(2). doi: 10.1093/bioinformatics/btaf030.

Abstract

MOTIVATION

The exploration of the 3D organization of DNA within the nucleus in relation to various stages of cellular development has led to experiments generating spatiotemporal Hi-C data. However, there is limited spatiotemporal Hi-C data for many organisms, impeding the study of 3D genome dynamics. To overcome this limitation and advance our understanding of genome organization, it is crucial to develop methods for forecasting Hi-C data at future time points from existing timeseries Hi-C data.

RESULT

In this work, we designed a novel framework named HiCForecast, adopting a dynamic voxel flow algorithm to forecast future spatiotemporal Hi-C data. We evaluated how well our method generalizes forecasting data across different species and systems, ensuring performance in homogeneous, heterogeneous, and general contexts. Using both computational and biological evaluation metrics, our results show that HiCForecast outperforms the current state-of-the-art algorithm, emerging as an efficient and powerful tool for forecasting future spatiotemporal Hi-C datasets.

AVAILABILITY AND IMPLEMENTATION

HiCForecast is publicly available at https://github.com/OluwadareLab/HiCForecast.

摘要

动机

对细胞核内DNA三维结构与细胞发育各阶段关系的探索催生了生成时空Hi-C数据的实验。然而,许多生物体的时空Hi-C数据有限,这阻碍了对三维基因组动力学的研究。为克服这一限制并增进我们对基因组组织的理解,从现有的时间序列Hi-C数据预测未来时间点的Hi-C数据的方法至关重要。

结果

在这项工作中,我们设计了一个名为HiCForecast的新颖框架,采用动态体素流算法来预测未来的时空Hi-C数据。我们评估了我们的方法在不同物种和系统中对预测数据的泛化程度,确保在同质、异质和一般情况下的性能。使用计算和生物学评估指标,我们的结果表明HiCForecast优于当前的最先进算法,成为预测未来时空Hi-C数据集的高效且强大的工具。

可用性和实现方式

HiCForecast可在https://github.com/OluwadareLab/HiCForecast上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8220/11793695/034cd255f77a/btaf030f1.jpg

相似文献

1
HiCForecast: dynamic network optical flow estimation algorithm for spatiotemporal Hi-C data forecasting.
Bioinformatics. 2025 Feb 4;41(2). doi: 10.1093/bioinformatics/btaf030.
2
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM.
Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad263.
6
ScHiCAtt: Enhancing single-cell Hi-C data resolution using attention-based models.
Comput Struct Biotechnol J. 2025 Feb 27;27:978-991. doi: 10.1016/j.csbj.2025.02.031. eCollection 2025.
7
Mariner: explore the Hi-Cs.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae352.
8
Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
Bioinformatics. 2023 Aug 1;39(8). doi: 10.1093/bioinformatics/btad458.
9
HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
Bioinformatics. 2022 Apr 28;38(9):2414-2421. doi: 10.1093/bioinformatics/btac156.
10
miniMDS: 3D structural inference from high-resolution Hi-C data.
Bioinformatics. 2017 Jul 15;33(14):i261-i266. doi: 10.1093/bioinformatics/btx271.

引用本文的文献

1
From 2D to 4D: a Containerized Workflow and Browser to Explore Dynamic Chromatin Architecture.
bioRxiv. 2025 Jul 18:2025.07.13.664622. doi: 10.1101/2025.07.13.664622.

本文引用的文献

1
Comparative study on chromatin loop callers using Hi-C data reveals their effectiveness.
BMC Bioinformatics. 2024 Mar 21;25(1):123. doi: 10.1186/s12859-024-05713-w.
2
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM.
Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad263.
3
Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia.
Cell. 2022 Mar 17;185(6):1052-1064.e12. doi: 10.1016/j.cell.2022.01.024. Epub 2022 Feb 2.
4
Four-Dimensional Chromosome Structure Prediction.
Int J Mol Sci. 2021 Sep 10;22(18):9785. doi: 10.3390/ijms22189785.
5
Three-dimensional folding dynamics of the Xenopus tropicalis genome.
Nat Genet. 2021 Jul;53(7):1075-1087. doi: 10.1038/s41588-021-00878-z. Epub 2021 Jun 7.
6
CTCF looping is established during gastrulation in medaka embryos.
Genome Res. 2021 Jun;31(6):968-980. doi: 10.1101/gr.269951.120. Epub 2021 May 18.
8
TADCompare: An R Package for Differential and Temporal Analysis of Topologically Associated Domains.
Front Genet. 2020 Mar 10;11:158. doi: 10.3389/fgene.2020.00158. eCollection 2020.
9
Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2.
Nat Protoc. 2020 Mar;15(3):991-1012. doi: 10.1038/s41596-019-0273-0. Epub 2020 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验