Suppr超能文献

基于多参数磁共振成像(mpMRI)影像组学特征的系统性前列腺穿刺活检核心针数的个性化优化:一项大样本回顾性分析

Personalized optimization of systematic prostate biopsy core number based on mpMRI radiomics features: a large-sample retrospective analysis.

作者信息

Chen Zhenlin, Li Zhihao, Dou Ruiling, Jiang Shaoqin, Lin Shaoshan, Lin Zequn, Xu Yue, Liu Ciquan, Zheng Zijie, Lin Yewen, Li Mengqiang

机构信息

Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.

Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian Province, China.

出版信息

BMC Cancer. 2025 Jan 22;25(1):116. doi: 10.1186/s12885-024-13391-3.

Abstract

BACKGROUND

Prostate cancer (PCa) is definitively diagnosed by systematic prostate biopsy (SBx) with 13 cores. This method, however, can increase the risk of urinary retention, infection and bleeding due to the excessive number of biopsy cores.

METHODS

We retrospectively analyzed 622 patients who underwent SBx with prostate multiparametric MRI (mpMRI) from two centers between January 2014 to June 2022. The MRI data were collected to manually segment Regions of Interest (ROI) of the tumor layer by layer. ROI reconstructions were fused to form outline of the volume of interest (VOI), which were exported and applied to subsequent extraction of radiomics features. The t-tests, Mann-Whitney U-tests and chi-squared tests were performed to evaluate the significance of features. The logistic regression was used for calculating the PCa risk score (PCS). The PCS model was trained to optimize the SBx core number, utilizing both mpMRI radiomics and clinical features.

RESULTS

The predicted number of SBx cores was determined by PCS model. Optimal core numbers of SBx for PCS subgroups 1-5 were calculated as 13, 10, 8, 6, and 6, respectively. Accuracies of predicted core numbers were high: 100%, 95.8%, 91.7%, 90.6%, and 92.7% for PCS subgroups 1-5. Optimized SBx reduced core rate by 41.9%. Leakage rates for PCa and clinically significant PCa were 8.2% and 3.4%, respectively. The optimized SBx also demonstrated high accuracy on the validation set.

CONCLUSION

The optimization PCS model described in this study could therefore effectively reduce the number of systematic biopsy cores obtained from patients with high PCS, especially for biopsy cores far away from suspicious lesions. This method can enhance patient experience without reducing tumor detection rate.

摘要

背景

前列腺癌(PCa)通过13针系统前列腺穿刺活检(SBx)确诊。然而,这种方法由于穿刺针数过多,会增加尿潴留、感染和出血的风险。

方法

我们回顾性分析了2014年1月至2022年6月期间在两个中心接受前列腺多参数MRI(mpMRI)引导下SBx的622例患者。收集MRI数据,逐层手动分割肿瘤层的感兴趣区域(ROI)。将ROI重建融合以形成感兴趣体积(VOI)的轮廓,导出并应用于随后的放射组学特征提取。进行t检验、曼-惠特尼U检验和卡方检验以评估特征的显著性。使用逻辑回归计算PCa风险评分(PCS)。利用mpMRI放射组学和临床特征训练PCS模型以优化SBx针数。

结果

由PCS模型确定SBx的预测针数。PCS亚组1-5的SBx最佳针数分别计算为13、10、8、6和6。预测针数的准确率很高:PCS亚组1-5分别为100%、95.8%、91.7%、90.6%和92.7%。优化后的SBx使针数减少了41.9%。PCa和临床显著PCa的漏诊率分别为8.2%和3.4%。优化后的SBx在验证集上也显示出高准确率。

结论

因此,本研究中描述的优化PCS模型可以有效减少高PCS患者的系统穿刺活检针数,特别是远离可疑病变的穿刺针数。这种方法可以提高患者体验,而不降低肿瘤检出率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d92e/11753051/5c3b3e2e5065/12885_2024_13391_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验