Suppr超能文献

基于可解释机器学习的脓毒症重症监护病房患者28天死亡率预测:一项多中心回顾性研究

Interpretable machine learning-based prediction of 28-day mortality in ICU patients with sepsis: a multicenter retrospective study.

作者信息

Shen Li, Wu Jiaqiang, Lan Jianger, Chen Chao, Wang Yi, Li Zhiping

机构信息

Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.

Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China.

出版信息

Front Cell Infect Microbiol. 2025 Jan 8;14:1500326. doi: 10.3389/fcimb.2024.1500326. eCollection 2024.

Abstract

BACKGROUND

Sepsis is a major cause of mortality in intensive care units (ICUs) and continues to pose a significant global health challenge, with sepsis-related deaths contributing substantially to the overall burden on healthcare systems worldwide. The primary objective was to construct and evaluate a machine learning (ML) model for forecasting 28-day all-cause mortality among ICU sepsis patients.

METHODS

Data for the study was sourced from the eICU Collaborative Research Database (eICU-CRD) (version 2.0). The main outcome was 28-day all-cause mortality. Predictor selection for the final model was conducted using the least absolute shrinkage and selection operator (LASSO) regression analysis and the Boruta feature selection algorithm. Five machine learning algorithms including logistic regression (LR), decision tree (DT), extreme gradient boosting (XGBoost), support vector machine (SVM), and light gradient boosting machine (lightGBM) were employed to construct models using 10-fold cross-validation. Model performance was evaluated using AUC, accuracy, sensitivity, specificity, recall, and F1 score. Additionally, we performed an interpretability analysis on the model that showed the most stable performance.

RESULTS

The final study cohort comprised 4564 patients, among whom 568 (12.4%) died within 28 days of ICU admission. The XGBoost algorithm demonstrated the most reliable performance, achieving an AUC of 0.821, balancing sensitivity (0.703) and specificity (0.798). The top three risk predictors of mortality included APACHE score, serum lactate levels, and AST.

CONCLUSION

ML models reliably predicted 28-day mortality in critically ill sepsis patients. Of the models evaluated, the XGBoost algorithm exhibited the most stable performance in identifying patients at elevated mortality risk. Model interpretability analysis identified crucial predictors, potentially informing clinical decisions for sepsis patients in the ICU.

摘要

背景

脓毒症是重症监护病房(ICU)患者死亡的主要原因,并且仍然是一项重大的全球健康挑战,与脓毒症相关的死亡在很大程度上加重了全球医疗系统的总体负担。主要目的是构建并评估一种机器学习(ML)模型,用于预测ICU脓毒症患者28天全因死亡率。

方法

本研究的数据来源于电子ICU协作研究数据库(eICU-CRD)(2.0版)。主要结局是28天全因死亡率。使用最小绝对收缩和选择算子(LASSO)回归分析以及Boruta特征选择算法进行最终模型的预测变量选择。采用包括逻辑回归(LR)、决策树(DT)、极端梯度提升(XGBoost)、支持向量机(SVM)和轻量级梯度提升机(lightGBM)在内的五种机器学习算法,通过10折交叉验证构建模型。使用AUC、准确率、敏感性、特异性、召回率和F1分数评估模型性能。此外,我们对表现最稳定的模型进行了可解释性分析。

结果

最终的研究队列包括4564例患者,其中568例(12.4%)在ICU入院后28天内死亡。XGBoost算法表现出最可靠的性能,AUC为0.821,敏感性(0.703)和特异性(0.798)达到平衡。死亡率的前三个风险预测因素包括APACHE评分、血清乳酸水平和谷草转氨酶。

结论

ML模型能够可靠地预测重症脓毒症患者的28天死亡率。在所评估的模型中,XGBoost算法在识别死亡风险升高的患者方面表现出最稳定的性能。模型可解释性分析确定了关键预测因素,可能为ICU中脓毒症患者的临床决策提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46d8/11751000/1341e81f13e2/fcimb-14-1500326-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验