Suppr超能文献

使用韩国国家健康与营养检查调查的横断面数据预测二手烟民抑郁症的机器学习模型。

Machine-learning model for predicting depression in second-hand smokers in cross-sectional data using the Korea National Health and Nutrition Examination Survey.

作者信息

Kim Na Hyun, Kim Myeongju, Han Jong Soo, Sohn Hyoju, Oh Bumjo, Lee Ji Won, Ahn Sumin

机构信息

Health Promotion Center, Seoul National University Bundang Hospital, Seongnam, South Korea.

Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital Healthcare Innovation Park, Seongnam, South Korea.

出版信息

Digit Health. 2024 May 23;10:20552076241257046. doi: 10.1177/20552076241257046. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

Depression among non-smokers at risk of second-hand smoke (SHS) exposure has been a neglected public health concern despite their vulnerability. The objective of this study was to develop high-performance machine-learning (ML) models for the prediction of depression in non-smokers and to identify important predictors of depression for second-hand smokers.

METHODS

ML algorithms were created using demographic and clinical data from the Korea National Health and Nutrition Examination Survey (KNHANES) participants from 2014, 2016, and 2018 ( = 11,463). The Patient Health Questionnaire was used to diagnose depression with a total score of 10 or higher. The final model was selected according to the area under the curve (AUC) or sensitivity. Shapley additive explanations (SHAP) were used to identify influential features.

RESULTS

The light gradient boosting machine (LGBM) with the highest positive predictive value (PPV; 0.646) was selected as the best model among the ML algorithms, whereas the support vector machine (SVM) had the highest AUC (0.900). The most influential factors identified using the LGBM were stress perception, followed by subjective health status and quality of life. Among the smoking-related features, urine cotinine levels were the most important, and no linear relationship existed between the smoking-related features and the values of SHAP.

CONCLUSIONS

Compared with the previously developed ML models, our LGBM models achieved excellent and even superior performance in predicting depression among non-smokers at risk of SHS exposure, suggesting potential goals for depression-preventive interventions for non-smokers during public health crises.

摘要

目的

尽管有遭受二手烟暴露风险的非吸烟者易受伤害,但他们的抑郁问题一直是被忽视的公共卫生问题。本研究的目的是开发用于预测非吸烟者抑郁的高性能机器学习(ML)模型,并确定二手烟暴露者抑郁的重要预测因素。

方法

使用来自2014年、2016年和2018年韩国国家健康与营养检查调查(KNHANES)参与者的人口统计学和临床数据创建ML算法(n = 11,463)。采用患者健康问卷诊断抑郁,总分10分及以上为抑郁。根据曲线下面积(AUC)或敏感性选择最终模型。使用夏普利值附加解释(SHAP)来识别有影响的特征。

结果

在ML算法中,具有最高阳性预测值(PPV;0.646)的轻梯度提升机(LGBM)被选为最佳模型,而支持向量机(SVM)的AUC最高(0.900)。使用LGBM确定的最有影响的因素是压力感知,其次是主观健康状况和生活质量。在与吸烟相关的特征中,尿可替宁水平最重要,且吸烟相关特征与SHAP值之间不存在线性关系。

结论

与先前开发的ML模型相比,我们的LGBM模型在预测有二手烟暴露风险的非吸烟者抑郁方面表现出色甚至更优,这为公共卫生危机期间非吸烟者抑郁预防干预提供了潜在目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ac/11113066/f6c1a43f4452/10.1177_20552076241257046-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验