Suppr超能文献

使用机器学习预测老年人的住院情况。

Predicting Hospitalization in Older Adults Using Machine Learning.

作者信息

Buenrostro-Mariscal Raymundo, Montesinos-López Osval A, Gonzalez-Gonzalez Cesar

机构信息

School of Telematics, University of Colima, Colima 28040, Mexico.

出版信息

Geriatrics (Basel). 2025 Jan 4;10(1):6. doi: 10.3390/geriatrics10010006.

Abstract

: Hospitalization among older adults is a growing challenge in Mexico due to the high prevalence of chronic diseases and limited public healthcare resources. This study aims to develop a predictive model for hospitalization using longitudinal data from the Mexican Health and Aging Study (MHAS) using the random forest (RF) algorithm. : An RF-based machine learning model was designed and evaluated under different data partition strategies (ST) with and without variable interaction. Variable importance was assessed based on the mean decrease in impurity and permutation importance, enhancing our understanding of predictors of hospitalization. The model's robustness was ensured through modified nested cross-validation, with evaluation metrics including sensitivity, specificity, and the kappa coefficient. : The model with ST2, incorporating interaction and a 20% test proportion, achieved the best balance between sensitivity (0.7215, standard error ± 0.0038), and specificity (0.4935, standard error ± 0.0039). Variable importance analysis revealed that functional limitations (e.g., abvd3, 31.1% importance), age (12.75%), and history of cerebrovascular accidents (12.4%) were the strongest predictors. Socioeconomic factors, including education level (12.08%), also emerged as critical predictors, highlighting the model's ability to capture complex interactions between health and socioeconomic variables. : The integration of variable importance analysis enhances the interpretability of the RF model, providing novel insights into the predictors of hospitalization in older adults. These findings underscore the potential for clinical applications, including anticipating hospital demand and optimizing resource allocation. Future research will focus on integrating subgroup analyses for comorbidities and advanced techniques for handling missing data to further improve predictive accuracy.

摘要

由于慢性病的高患病率和公共医疗资源的有限性,老年人住院治疗在墨西哥正成为一个日益严峻的挑战。本研究旨在利用墨西哥健康与老龄化研究(MHAS)的纵向数据,采用随机森林(RF)算法开发一种住院治疗预测模型。:设计了一种基于RF的机器学习模型,并在有无变量交互的不同数据划分策略(ST)下进行评估。基于杂质平均减少量和排列重要性评估变量重要性,加深了我们对住院治疗预测因素的理解。通过改进的嵌套交叉验证确保了模型的稳健性,评估指标包括敏感性、特异性和kappa系数。:采用ST2的模型,结合交互作用和20%的测试比例,在敏感性(0.7215,标准误差±0.0038)和特异性(0.4935,标准误差±0.0039)之间实现了最佳平衡。变量重要性分析表明,功能受限(如abvd3,重要性为31.1%)、年龄(12.75%)和脑血管意外病史(12.4%)是最强的预测因素。社会经济因素,包括教育水平(12.08%),也成为关键预测因素,突出了该模型捕捉健康与社会经济变量之间复杂相互作用的能力。:变量重要性分析的整合增强了RF模型的可解释性,为老年人住院治疗的预测因素提供了新的见解。这些发现强调了临床应用的潜力,包括预测医院需求和优化资源分配。未来的研究将集中于整合合并症的亚组分析和处理缺失数据的先进技术,以进一步提高预测准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验