Suppr超能文献

基于宫颈细胞形态差异的标签可信度校正用于宫颈细胞分类。

Label credibility correction based on cell morphological differences for cervical cells classification.

作者信息

Pang Wenbo, Qiu Yue, Jin Shu, Jiang Huiyan, Ma Yi

机构信息

Software College, Northeastern University, Shenyang, 110169, China.

University of Warwick, Coventry, CV4 7AL, UK.

出版信息

Sci Rep. 2025 Jan 2;15(1):2. doi: 10.1038/s41598-024-84899-8.

Abstract

Cervical cancer is one of the deadliest cancers that pose a significant threat to women's health. Early detection and treatment are commonly used methods to prevent cervical cancer. The use of pathological image analysis techniques for the automatic interpretation of cervical cells in pathological slides is a prominent area of research in the field of digital medicine. According to The Bethesda System, cervical cytology necessitates further classification of precancerous lesions based on positive interpretations. However, clinical definitions among different categories of lesion are complex and often characterized by fuzzy boundaries. In addition, pathologists can deduce different criteria for judgment based on The Bethesda System, leading to potential confusion during data labeling. Noisy labels due to this reason are a great challenge for supervised learning. To address the problem caused by noisy labels, we propose a method based on label credibility correction for cervical cell images classification network. Firstly, a contrastive learning network is used to extract discriminative features from cell images to obtain more similar intra-class sample features. Subsequently, these features are fed into an unsupervised method for clustering, resulting in unsupervised class labels. Then unsupervised labels are corresponded to the true labels to separate confusable and typical samples. Through a similarity comparison between the cluster samples and the statistical feature centers of each class, the label credibility analysis is carried out to group labels. Finally, a cervical cell images multi-class network is trained using synergistic grouping method. In order to enhance the stability of the classification model, momentum is incorporated into the synergistic grouping loss. Experimental validation is conducted on a dataset comprising approximately 60,000 cells from multiple hospitals, showcasing the effectiveness of our proposed approach. The method achieves 2-class task accuracy of 0.9241 and 5-class task accuracy of 0.8598. Our proposed method achieves better performance than existing classification networks on cervical cancer.

摘要

宫颈癌是对女性健康构成重大威胁的最致命癌症之一。早期检测和治疗是预防宫颈癌的常用方法。将病理图像分析技术用于病理切片中宫颈细胞的自动解读是数字医学领域一个突出的研究方向。根据《贝塞斯达系统》,宫颈细胞学需要基于阳性解读对癌前病变进行进一步分类。然而,不同类别病变之间的临床定义很复杂,且往往具有模糊的边界。此外,病理学家根据《贝塞斯达系统》可能会推断出不同的判断标准,这会导致数据标注过程中出现潜在的混乱。由于这个原因产生的噪声标签对监督学习来说是一个巨大的挑战。为了解决由噪声标签引起的问题,我们提出一种基于标签可信度校正的方法用于宫颈细胞图像分类网络。首先,使用对比学习网络从细胞图像中提取判别特征,以获得更相似的类内样本特征。随后,将这些特征输入到一种无监督方法进行聚类,从而得到无监督类标签。然后将无监督标签与真实标签对应起来,以区分易混淆样本和典型样本。通过聚类样本与每个类别的统计特征中心之间的相似度比较,进行标签可信度分析以对标签进行分组。最后,使用协同分组方法训练宫颈细胞图像多类网络。为了提高分类模型的稳定性,将动量纳入协同分组损失中。在一个包含来自多家医院约60000个细胞的数据集上进行了实验验证,展示了我们提出的方法的有效性。该方法在二分类任务中的准确率为0.9241,在五分类任务中的准确率为0.8598。我们提出的方法在宫颈癌方面比现有的分类网络表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cf3/11696166/aaf58cc19696/41598_2024_84899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验