Suppr超能文献

自主闭环神经调节在运动康复中的算法特性研究。

Characterization of an Algorithm for Autonomous, Closed-Loop Neuromodulation During Motor Rehabilitation.

机构信息

Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA.

Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.

出版信息

Neurorehabil Neural Repair. 2024 Jul;38(7):493-505. doi: 10.1177/15459683241252599. Epub 2024 May 7.

Abstract

BACKGROUND

Recent evidence demonstrates that manually triggered vagus nerve stimulation (VNS) combined with rehabilitation leads to increased recovery of upper limb motor function after stroke. This approach is premised on studies demonstrating that the timing of stimulation relative to movements is a key determinant in the effectiveness of this approach.

OBJECTIVE

The overall goal of the study was to identify an algorithm that could be used to automatically trigger VNS on the best movements during rehabilitative exercises while maintaining a desired interval between stimulations to reduce the burden of manual stimulation triggering.

METHODS

To develop the algorithm, we analyzed movement data collected from patients with a history of neurological injury. We applied 3 different algorithms to the signal, analyzed their triggering choices, and then validated the best algorithm by comparing triggering choices to those selected by a therapist delivering VNS therapy.

RESULTS

The dynamic algorithm triggered above the 95th percentile of maximum movement at a rate of 5.09 (interquartile range [IQR] = 0.74) triggers per minute. The periodic algorithm produces stimulation at set intervals but low movement selectivity (34.05%, IQR = 7.47), while the static threshold algorithm produces long interstimulus intervals (27.16 ± 2.01 seconds) with selectivity of 64.49% (IQR = 25.38). On average, the dynamic algorithm selects movements that are 54 ± 3% larger than therapist-selected movements.

CONCLUSIONS

This study shows that a dynamic algorithm is an effective strategy to trigger VNS during the best movements at a reliable triggering rate.

摘要

背景

最近的证据表明,手动触发迷走神经刺激(VNS)结合康复可以促进中风后上肢运动功能的恢复。这种方法的前提是研究表明,刺激与运动的时间关系是这种方法有效性的关键决定因素。

目的

该研究的总体目标是确定一种算法,该算法可以在康复运动过程中自动触发 VNS 最佳运动,同时保持刺激之间的期望间隔,以减少手动刺激触发的负担。

方法

为了开发算法,我们分析了来自有神经损伤病史的患者的运动数据。我们将 3 种不同的算法应用于信号,分析它们的触发选择,然后通过将触发选择与治疗师提供 VNS 治疗时的选择进行比较,验证最佳算法。

结果

动态算法以 5.09 次/分钟(四分位距[IQR] = 0.74)的速度在最大运动的第 95 个百分位数以上触发。周期性算法以设定的间隔产生刺激,但运动选择性低(34.05%,IQR = 7.47),而静态阈值算法产生的刺激间隔较长(27.16 ± 2.01 秒),选择性为 64.49%(IQR = 25.38)。平均而言,动态算法选择的运动比治疗师选择的运动大 54 ± 3%。

结论

这项研究表明,动态算法是一种在可靠触发率下触发 VNS 最佳运动的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b97/11181737/13e27182227d/10.1177_15459683241252599-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验