Bonowicz Klaudia, Jerka Dominika, Piekarska Klaudia, Olagbaju Janet, Stapleton Laura, Shobowale Munirat, Bartosiński Andrzej, Łapot Magdalena, Bai Yidong, Gagat Maciej
Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland.
Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland.
Cells. 2025 Jan 17;14(2):131. doi: 10.3390/cells14020131.
Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD). The technology's ability to correct single-gene mutations with high precision and efficiency positions it as a groundbreaking tool in cardiovascular therapy. Recent developments have extended the capabilities of CRISPR-Cas9 to include mitochondrial genome editing, a critical advancement for addressing mitochondrial dysfunctions often linked to cardiovascular disorders. Despite its promise, significant challenges remain, including off-target effects, ethical concerns, and limitations in delivery methods, which hinder its translation into clinical practice. This article also explores the ethical and regulatory considerations surrounding gene editing technologies, emphasizing the implications of somatic versus germline modifications. Future research efforts should aim to enhance the accuracy of CRISPR-Cas9, improve delivery systems for targeted tissues, and ensure the safety and efficacy of treatments in the long term. Overcoming these obstacles could enable CRISPR-Cas9 to not only treat but also potentially cure genetically driven cardiovascular diseases, heralding a new era in precision medicine for cardiovascular health.
心血管疾病(CVDs)仍然是一项重大的全球健康挑战,当前许多治疗方法针对的是症状而非这些疾病的基因根源。CRISPR-Cas9技术的出现彻底改变了基因组编辑,提供了一种直接靶向致病突变的变革性方法。本文探讨了CRISPR-Cas9在治疗各种心血管疾病中的潜力,包括动脉粥样硬化、心律失常、心肌病、高血压和杜氏肌营养不良症(DMD)。该技术以高精度和高效率校正单基因突变的能力使其成为心血管治疗中的一项开创性工具。最近的进展将CRISPR-Cas9的能力扩展到包括线粒体基因组编辑,这是解决通常与心血管疾病相关的线粒体功能障碍的一项关键进展。尽管前景广阔,但仍存在重大挑战,包括脱靶效应、伦理问题以及递送方法的局限性,这些都阻碍了其转化为临床实践。本文还探讨了围绕基因编辑技术的伦理和监管考量,强调了体细胞与生殖系修饰的影响。未来的研究工作应旨在提高CRISPR-Cas9的准确性,改进靶向组织的递送系统,并确保治疗的长期安全性和有效性。克服这些障碍可能使CRISPR-Cas9不仅能够治疗,而且有可能治愈由基因驱动的心血管疾病,开创心血管健康精准医学的新纪元。