Suppr超能文献

使用卷积神经网络集成和感兴趣区域定位对胸部 X 射线图像进行病毒性肺炎的自动分级。

Automated grading of chest x-ray images for viral pneumonia with convolutional neural networks ensemble and region of interest localization.

机构信息

Computer and Software Engineering Department, National University of Sciences and Technology, Islamabad, Pakistan.

Department of Computing, Glasgow Caledonian University, Glasgow, United Kingdom.

出版信息

PLoS One. 2023 Jan 17;18(1):e0280352. doi: 10.1371/journal.pone.0280352. eCollection 2023.

Abstract

Following its initial identification on December 31, 2019, COVID-19 quickly spread around the world as a pandemic claiming more than six million lives. An early diagnosis with appropriate intervention can help prevent deaths and serious illness as the distinguishing symptoms that set COVID-19 apart from pneumonia and influenza frequently don't show up until after the patient has already suffered significant damage. A chest X-ray (CXR), one of many imaging modalities that are useful for detection and one of the most used, offers a non-invasive method of detection. The CXR image analysis can also reveal additional disorders, such as pneumonia, which show up as anomalies in the lungs. Thus these CXRs can be used for automated grading aiding the doctors in making a better diagnosis. In order to classify a CXR image into the Negative for Pneumonia, Typical, Indeterminate, and Atypical, we used the publicly available CXR image competition dataset SIIM-FISABIO-RSNA COVID-19 from Kaggle. The suggested architecture employed an ensemble of EfficientNetv2-L for classification, which was trained via transfer learning from the initialised weights of ImageNet21K on various subsets of data (Code for the proposed methodology is available at: https://github.com/asadkhan1221/siim-covid19.git). To identify and localise opacities, an ensemble of YOLO was combined using Weighted Boxes Fusion (WBF). Significant generalisability gains were made possible by the suggested technique's addition of classification auxiliary heads to the CNN backbone. The suggested method improved further by utilising test time augmentation for both classifiers and localizers. The results for Mean Average Precision score show that the proposed deep learning model achieves 0.617 and 0.609 on public and private sets respectively and these are comparable to other techniques for the Kaggle dataset.

摘要

自 2019 年 12 月 31 日首次发现以来,COVID-19 迅速在全球范围内传播,成为一种大流行疾病,导致超过 600 万人死亡。早期诊断和适当的干预可以帮助预防死亡和严重疾病,因为 COVID-19 与肺炎和流感不同的显著症状通常在患者已经遭受重大损害后才会出现。胸部 X 光(CXR)是许多有用的成像方式之一,也是最常用的方式之一,提供了一种非侵入性的检测方法。CXR 图像分析还可以揭示其他疾病,如肺炎,这些疾病在肺部出现异常。因此,这些 CXR 可用于自动分级,帮助医生做出更好的诊断。为了将 CXR 图像分类为阴性、典型、不确定和非典型肺炎,我们使用了 Kaggle 上公开的 SIIM-FISABIO-RSNA COVID-19 胸部 X 光图像竞赛数据集。所提出的架构采用了 EfficientNetv2-L 的集成进行分类,该架构通过在各种数据子集上从初始的 ImageNet21K 权重进行迁移学习进行训练(建议方法的代码可在:https://github.com/asadkhan1221/siim-covid19.git 获得)。为了识别和定位不透明度,使用加权框融合(WBF)组合了 YOLO 集成。通过向 CNN 骨干添加分类辅助头,该建议技术实现了显著的泛化增益。该建议方法通过对分类器和定位器都使用测试时间增强进一步得到了改进。平均精度得分的结果表明,所提出的深度学习模型在公共数据集和私有数据集上的得分分别为 0.617 和 0.609,与 Kaggle 数据集的其他技术相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c60/9844910/e238cf632243/pone.0280352.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验