García-Messeguer Rafael, Navarrete-Miguel Miriam, Martí Sergio, Tuñón Iñaki, Roca-Sanjuán Daniel
Instituto de Ciencia Molecular, Universitat de València, 22085 València, Spain.
Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain.
J Chem Theory Comput. 2025 Feb 11;21(3):1353-1359. doi: 10.1021/acs.jctc.4c01583. Epub 2025 Jan 24.
Determining the energetics of triplet electronic states of nucleobases in the biological macromolecular environment of nucleic acids is essential for an accurate description of the mechanism of photosensitization and the design of drugs for cancer treatment. In this work, we aim at developing a methodological approach to obtain accurate free energies of triplets in DNA beyond the state of the art, able to reproduce the decrease of triplet energies measured experimentally for in DNA (270 kJ/mol) vs in the isolated nucleotide in aqueous solution (310 kJ/mol). For such purposes, we adapt the free energy perturbation method to compute the free energy related to the transformation of a pure singlet state into a pure triplet state via "alchemical" intermediates with mixed singlet-triplet nature. By this means, standard deviation errors are only a few kJ/mol, contrary to the large errors of tenths of kJ/mol obtained by averaging the singlet and triplet energies derived from molecular dynamics simulations. The reduced statistical errors obtained by the free energy perturbation approach allow us to rationalize with confidence the triplet stabilization observed experimentally when comparing the thymine nucleotide and thymine in DNA. Spin polarization rather than excimer interactions between the π-stacked nucleobases originates the lower values of the triplet energies in DNA. The developed approach implemented in QM shall be useful for determining free energies of triplets and other states like ionic or charge separation states in any other macromolecular system with impact in biomedicine and materials science.
确定核酸生物大分子环境中核碱基三重态电子态的能量,对于准确描述光敏化机制和设计癌症治疗药物至关重要。在这项工作中,我们旨在开发一种方法,以获得超越现有技术水平的DNA中三重态的精确自由能,能够重现实验测量的DNA中三重态能量(270 kJ/mol)相对于水溶液中分离核苷酸中三重态能量(310 kJ/mol)的降低。为此,我们采用自由能微扰方法,通过具有混合单重态-三重态性质的“炼金术”中间体来计算与纯单重态转变为纯三重态相关的自由能。通过这种方式,标准偏差误差仅为几kJ/mol,这与通过平均分子动力学模拟得出的单重态和三重态能量所获得的十分之几kJ/mol的大误差形成对比。自由能微扰方法获得的统计误差降低,使我们能够有信心地合理解释在比较DNA中的胸腺嘧啶核苷酸和胸腺嘧啶时实验观察到的三重态稳定化现象。DNA中三重态能量较低的值源于π堆积核碱基之间的自旋极化而非准分子相互作用。在量子力学中实现的所开发方法,对于确定任何其他对生物医学和材料科学有影响的大分子系统中三重态以及其他状态(如离子或电荷分离状态)的自由能将是有用的。