Suppr超能文献

通过靶向递送银纳米颗粒进行微环境工程以促进电催化CO还原反应

Microenvironment engineering by targeted delivery of Ag nanoparticles for boosting electrocatalytic CO reduction reaction.

作者信息

Xu Ting, Yang Hao, Lu Tianrui, Zhong Rui, Lv Jing-Jing, Zhu Shaojun, Zhang Mingming, Wang Zheng-Jun, Yuan Yifei, Li Jun, Wang Jichang, Jin Huile, Pan Shuang, Wang Xin, Cheng Tao, Wang Shun

机构信息

Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.

出版信息

Nat Commun. 2025 Jan 24;16(1):977. doi: 10.1038/s41467-025-56039-x.

Abstract

Creating and maintaining a favorable microenvironment for electrocatalytic CO reduction reaction (eCORR) is challenging due to the vigorous interactions with both gas and electrolyte solution during the electrocatalysis. Herein, to boost the performance of eCORR, a unique synthetic method that deploys the in situ reduction of precoated precursors is developed to produce activated Ag nanoparticles (NPs) within the gas diffusion layer (GDL), where the thus-obtained Ag NPs-Skeleton can block direct contact between the active Ag sites and electrolyte. Specifically, compared to the conventional surface loading mode in the acidic media, our freestanding and binder free electrode can achieve obvious higher CO selectivity of 94%, CO production rate of 23.3 mol g h, single-pass CO conversion of 58.6%, and enhanced long-term stability of 8 hours. Our study shows that delivering catalysts within the GDL does not only gain the desired physical protection from GDL skeleton to achieve a superior local microenvironment for more efficient pH-universal eCORR, but also manifests the pore structures to effectively address gas accumulation and flood issues.

摘要

由于在电催化过程中与气体和电解质溶液的强烈相互作用,为电催化CO还原反应(eCORR)创造和维持一个有利的微环境具有挑战性。在此,为了提高eCORR的性能,开发了一种独特的合成方法,该方法通过原位还原预涂覆的前驱体,在气体扩散层(GDL)中制备活性银纳米颗粒(NPs),由此获得的银纳米颗粒骨架可以阻止活性银位点与电解质直接接触。具体而言,与酸性介质中的传统表面负载模式相比,我们的独立无粘结剂电极能够实现高达94%的明显更高的CO选择性、23.3 mol g h的CO产率、58.6%的单程CO转化率以及长达8小时的增强的长期稳定性。我们的研究表明,在GDL中负载催化剂不仅能从GDL骨架获得所需的物理保护,以实现更高效的pH通用eCORR的优越局部微环境,还能展现孔隙结构以有效解决气体积累和水淹问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc8/11761435/577ea0c5d142/41467_2025_56039_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验