Padilla Marshall S, Mrksich Kaitlin, Wang Yiming, Haley Rebecca M, Li Jacqueline J, Han Emily L, El-Mayta Rakan, Kim Emily H, Dias Sofia, Gong Ningqiang, Teerdhala Sridatta V, Han Xuexiang, Chowdhary Vivek, Xue Lulu, Siddiqui Zain, Yamagata Hannah M, Kim Dongyoon, Yoon Il-Chul, Wilson James M, Radhakrishnan Ravi, Mitchell Michael J
Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Nat Commun. 2025 Jan 24;16(1):996. doi: 10.1038/s41467-024-55137-6.
Lipid nanoparticles (LNPs) are the preeminent non-viral drug delivery vehicle for mRNA-based therapies. Immense effort has been placed on optimizing the ionizable lipid (IL) structure, which contains an amine core conjugated to lipid tails, as small molecular adjustments can result in substantial changes in the overall efficacy of the resulting LNPs. However, despite some advancements, a major barrier for LNP delivery is endosomal escape. Here, we develop a platform for synthesizing a class of branched ILs that improve endosomal escape. These compounds incorporate terminally branched groups that increase hepatic mRNA and ribonucleoprotein complex delivery and gene editing efficiency as well as T cell transfection compared to non-branched lipids. Through an array of complementary experiments, we determine that our lipid architecture induces greater endosomal penetration and disruption. This work provides a scheme to generate a class of ILs for both mRNA and protein delivery.
脂质纳米颗粒(LNPs)是用于基于mRNA的疗法的卓越非病毒药物递送载体。人们已付出巨大努力来优化可电离脂质(IL)结构,该结构包含与脂质尾部共轭的胺核心,因为小分子调整可能会导致所得LNPs的整体功效发生重大变化。然而,尽管取得了一些进展,但LNP递送的一个主要障碍是内体逃逸。在此,我们开发了一个用于合成一类可改善内体逃逸的支链ILs的平台。与非支链脂质相比,这些化合物包含末端支链基团,可提高肝脏mRNA和核糖核蛋白复合物的递送以及基因编辑效率,以及T细胞转染效率。通过一系列补充实验,我们确定我们的脂质结构可诱导更大的内体穿透和破坏。这项工作提供了一种生成用于mRNA和蛋白质递送的一类ILs的方案。