Suppr超能文献

使用数字图像相关和机器学习的Corvis ST序列诊断顿挫型圆锥角膜

Diagnosis of Forme Fruste Keratoconus Using Corvis ST Sequences with Digital Image Correlation and Machine Learning.

作者信息

Yang Lanting, Qi Kehan, Zhang Peipei, Cheng Jiaxuan, Soha Hera, Jin Yun, Ci Haochen, Zheng Xianling, Wang Bo, Mei Yue, Chen Shihao, Wang Junjie

机构信息

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

出版信息

Bioengineering (Basel). 2024 Apr 26;11(5):429. doi: 10.3390/bioengineering11050429.

Abstract

PURPOSE

This study aimed to employ the incremental digital image correlation (DIC) method to obtain displacement and strain field data of the cornea from Corvis ST (CVS) sequences and access the performance of embedding these biomechanical data with machine learning models to distinguish forme fruste keratoconus (FFKC) from normal corneas.

METHODS

100 subjects were categorized into normal (N = 50) and FFKC (N = 50) groups. Image sequences depicting the horizontal cross-section of the human cornea under air puff were captured using the Corvis ST tonometer. The high-speed evolution of full-field corneal displacement, strain, velocity, and strain rate was reconstructed utilizing the incremental DIC approach. Maximum (max-) and average (ave-) values of full-field displacement V, shear strain γxy, velocity VR, and shear strain rate γxyR were determined over time, generating eight evolution curves denoting max-V, max-γxy, max-VR, max-γxyR, ave-V, ave-γxy, ave-VR, and ave-γxyR, respectively. These evolution data were inputted into two machine learning (ML) models, specifically Naïve Bayes (NB) and Random Forest (RF) models, which were subsequently employed to construct a voting classifier. The performance of the models in diagnosing FFKC from normal corneas was compared to existing CVS parameters.

RESULTS

The Normal group and the FFKC group each included 50 eyes. The FFKC group did not differ from healthy controls for age ( = 0.26) and gender ( = 0.36) at baseline, but they had significantly lower bIOP ( < 0.001) and thinner central cornea thickness (CCT) ( < 0.001). The results demonstrated that the proposed voting ensemble model yielded the highest performance with an AUC of 1.00, followed by the RF model with an AUC of 0.99. Radius and A2 Time emerged as the best-performing CVS parameters with AUC values of 0.948 and 0.938, respectively. Nonetheless, no existing Corvis ST parameters outperformed the ML models. A progressive enhancement in performance of the ML models was observed with incremental time points during the corneal deformation.

CONCLUSION

This study represents the first instance where displacement and strain data following incremental DIC analysis of Corvis ST images were integrated with machine learning models to effectively differentiate FFKC corneas from normal ones, achieving superior accuracy compared to existing CVS parameters. Considering biomechanical responses of the inner cornea and their temporal pattern changes may significantly improve the early detection of keratoconus.

摘要

目的

本研究旨在采用增量数字图像相关(DIC)方法从Corvis ST(CVS)序列中获取角膜的位移和应变场数据,并评估将这些生物力学数据与机器学习模型相结合以区分亚临床圆锥角膜(FFKC)和正常角膜的性能。

方法

100名受试者被分为正常组(N = 50)和FFKC组(N = 50)。使用Corvis ST眼压计采集在吹气时描绘人眼角膜水平横截面的图像序列。利用增量DIC方法重建全场角膜位移、应变、速度和应变率的高速演变过程。随时间确定全场位移V、剪应变γxy、速度VR和剪应变率γxyR的最大值(max-)和平均值(ave-),生成分别表示max-V、max-γxy、max-VR、max-γxyR、ave-V、ave-γxy、ave-VR和ave-γxyR的八条演变曲线。将这些演变数据输入到两个机器学习(ML)模型中,即朴素贝叶斯(NB)模型和随机森林(RF)模型,随后用于构建投票分类器。将这些模型在从正常角膜诊断FFKC方面的性能与现有的CVS参数进行比较。

结果

正常组和FFKC组各包含50只眼。FFKC组在基线时的年龄(P = 0.26)和性别(P = 0.36)与健康对照组无差异,但他们的眼压(bIOP)显著较低(P < 0.001),中央角膜厚度(CCT)较薄(P < 0.001)。结果表明,所提出的投票集成模型性能最高,AUC为1.00,其次是RF模型,AUC为0.99。半径和A2时间是性能最佳的CVS参数,AUC值分别为0.948和0.938。然而,现有的Corvis ST参数均未超过ML模型。在角膜变形过程中,随着时间点的增加,ML模型的性能逐渐提高。

结论

本研究首次将对Corvis ST图像进行增量DIC分析后的位移和应变数据与机器学习模型相结合,以有效区分FFKC角膜和正常角膜,与现有的CVS参数相比,具有更高的准确性。考虑角膜内部的生物力学反应及其随时间的模式变化可能会显著改善圆锥角膜的早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22bc/11117575/b1b798bccdcc/bioengineering-11-00429-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验