Park Heon-Sung, Sung Min-Kyung, Kim Dae-Won, Lee Jaesung
School of Computer Science and Engineering, Chung-Dang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
Department of Artifcial Intelligence, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
Sensors (Basel). 2025 Jan 13;25(2):427. doi: 10.3390/s25020427.
Sensor-based gesture recognition on mobile devices is critical to human-computer interaction, enabling intuitive user input for various applications. However, current approaches often rely on server-based retraining whenever new gestures are introduced, incurring substantial energy consumption and latency due to frequent data transmission. To address these limitations, we present the first on-device continual learning framework for gesture recognition. Leveraging the Nearest Class Mean (NCM) classifier coupled with a replay-based update strategy, our method enables continuous adaptation to new gestures under limited computing and memory resources. By employing replay buffer management, we efficiently store and revisit previously learned instances, mitigating catastrophic forgetting and ensuring stable performance as new gestures are added. Experimental results on a Samsung Galaxy S10 device demonstrate that our method achieves over 99% accuracy while operating entirely on-device, offering a compelling synergy between computational efficiency, robust continual learning, and high recognition accuracy. This work demonstrates the potential of on-device continual learning frameworks that integrate NCM classifiers with replay-based techniques, thereby advancing the field of resource-constrained, adaptive gesture recognition.
移动设备上基于传感器的手势识别对于人机交互至关重要,可为各种应用实现直观的用户输入。然而,当前方法在引入新手势时通常依赖基于服务器的重新训练,由于频繁的数据传输会导致大量的能量消耗和延迟。为了解决这些限制,我们提出了首个用于手势识别的设备端持续学习框架。利用最近类均值(NCM)分类器并结合基于重放的更新策略,我们的方法能够在有限的计算和内存资源下持续适应新手势。通过采用重放缓冲区管理,我们有效地存储和重新访问先前学习的实例,减轻灾难性遗忘,并在添加新手势时确保稳定的性能。在三星Galaxy S10设备上的实验结果表明,我们的方法在完全在设备上运行时可实现超过99%的准确率,在计算效率、强大的持续学习和高识别准确率之间提供了引人注目的协同效应。这项工作展示了将NCM分类器与基于重放的技术相结合的设备端持续学习框架的潜力,从而推动了资源受限的自适应手势识别领域的发展。