文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于增强L-谷胱甘肽局部递送的创新型富含固体脂质纳米颗粒的水凝胶:一种抗老化的新方法。

Innovative Solid Lipid Nanoparticle-Enriched Hydrogels for Enhanced Topical Delivery of L-Glutathione: A Novel Approach to Anti-Ageing.

作者信息

Liu Mengyang, Sharma Manisha, Lu Guoliang, Zhang Zhiwen, Song Wenting, Wen Jingyuan

机构信息

School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.

Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.

出版信息

Pharmaceutics. 2024 Dec 24;17(1):4. doi: 10.3390/pharmaceutics17010004.


DOI:10.3390/pharmaceutics17010004
PMID:39861655
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11768106/
Abstract

Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application. This study introduces a novel solid lipid nanoparticle (SLN)-enriched hydrogel designed to enhance GSH stability, skin penetration, and sustained release for anti-ageing applications. GSH-loaded SLNs were prepared via a double-emulsion technique and optimized using factorial design. These SLNs were incorporated into 1-3% (/) Carbopol hydrogels to produce a semi-solid formulation. The hydrogel's characteristics, including morphology, mechanical and rheological properties, drug release, stability, antioxidant activity, cytotoxicity, and skin penetration, were evaluated. SEM and FTIR confirmed the uniform dispersion of SLNs within the hydrogel. The formulation exhibited desirable properties, including gel strength (5.1 ± 0.5 g), spreadability (33.6 ± 1.9 g·s), pseudoplasticity, and elasticity. In vitro studies revealed a biphasic GSH release profile, with sustained release over 72 h and over 70% cumulative release. The hydrogel significantly improved antioxidant capacity, protecting human fibroblasts from UVA-induced oxidative stress and enhancing cell viability. Stability studies indicated that 4 °C was optimal for storage over three months. Notably, the hydrogel enhanced GSH penetration through the stratum corneum by 3.7-fold. This SLN-enriched hydrogel effectively improves GSH topical delivery and antioxidant efficacy, providing a promising platform for anti-ageing and other bioactive compounds with similar delivery challenges.

摘要

皮肤老化主要由环境因素如紫外线A(UVA)辐射诱导的活性氧(ROS)产生的氧化应激所驱动,约占外在皮肤损伤的80%。L-谷胱甘肽(GSH)是一种强效抗氧化剂,有望对抗UVA诱导的氧化应激。然而,其不稳定性以及通过角质层的渗透有限阻碍了其局部应用。本研究引入了一种新型的富含固体脂质纳米颗粒(SLN)的水凝胶,旨在提高GSH的稳定性、皮肤渗透性和持续释放,用于抗老化应用。通过双乳液技术制备了负载GSH的SLN,并使用析因设计进行优化。将这些SLN掺入1 - 3%(/)的卡波姆水凝胶中制成半固体制剂。评估了水凝胶的特性,包括形态、机械和流变学性质、药物释放、稳定性、抗氧化活性、细胞毒性和皮肤渗透性。扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)证实了SLN在水凝胶中的均匀分散。该制剂表现出理想的性质,包括凝胶强度(5.1±0.5 g)、铺展性(33.6±1.9 g·s)、假塑性和弹性。体外研究显示GSH呈双相释放曲线,在72小时内持续释放,累积释放超过70%。该水凝胶显著提高了抗氧化能力,保护人成纤维细胞免受UVA诱导的氧化应激并提高细胞活力。稳定性研究表明,4℃是三个月以上储存的最佳温度。值得注意的是,该水凝胶使GSH透过角质层的渗透率提高了3.7倍。这种富含SLN的水凝胶有效改善了GSH的局部递送和抗氧化功效,为抗老化及其他具有类似递送挑战的生物活性化合物提供了一个有前景的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/07d1a0048311/pharmaceutics-17-00004-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/47a259819790/pharmaceutics-17-00004-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/2367401f968e/pharmaceutics-17-00004-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/0df0f97a3573/pharmaceutics-17-00004-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/ba3081382941/pharmaceutics-17-00004-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/343568d70c79/pharmaceutics-17-00004-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/117323ed426d/pharmaceutics-17-00004-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/5230860dc3ec/pharmaceutics-17-00004-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/93555df06ecf/pharmaceutics-17-00004-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/a4196450fbaf/pharmaceutics-17-00004-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/c1aebc6a9182/pharmaceutics-17-00004-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/f0d5193b8bba/pharmaceutics-17-00004-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/4789708f1437/pharmaceutics-17-00004-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/63b4cd1cd0d8/pharmaceutics-17-00004-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/14e05e976745/pharmaceutics-17-00004-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/dea36c5dfb34/pharmaceutics-17-00004-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/9fc071b5d431/pharmaceutics-17-00004-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/d6a223e1359b/pharmaceutics-17-00004-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/fbc9853f923e/pharmaceutics-17-00004-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/07d1a0048311/pharmaceutics-17-00004-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/47a259819790/pharmaceutics-17-00004-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/2367401f968e/pharmaceutics-17-00004-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/0df0f97a3573/pharmaceutics-17-00004-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/ba3081382941/pharmaceutics-17-00004-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/343568d70c79/pharmaceutics-17-00004-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/117323ed426d/pharmaceutics-17-00004-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/5230860dc3ec/pharmaceutics-17-00004-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/93555df06ecf/pharmaceutics-17-00004-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/a4196450fbaf/pharmaceutics-17-00004-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/c1aebc6a9182/pharmaceutics-17-00004-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/f0d5193b8bba/pharmaceutics-17-00004-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/4789708f1437/pharmaceutics-17-00004-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/63b4cd1cd0d8/pharmaceutics-17-00004-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/14e05e976745/pharmaceutics-17-00004-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/dea36c5dfb34/pharmaceutics-17-00004-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/9fc071b5d431/pharmaceutics-17-00004-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/d6a223e1359b/pharmaceutics-17-00004-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/fbc9853f923e/pharmaceutics-17-00004-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b7/11768106/07d1a0048311/pharmaceutics-17-00004-g019.jpg

相似文献

[1]
Innovative Solid Lipid Nanoparticle-Enriched Hydrogels for Enhanced Topical Delivery of L-Glutathione: A Novel Approach to Anti-Ageing.

Pharmaceutics. 2024-12-24

[2]
Full factorial design, physicochemical characterization, ex vivo investigation, and biological assessment of glutathione-loaded solid lipid nanoparticles for topical application.

Int J Pharm. 2023-1-5

[3]
Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery.

Int J Pharm. 2013-3-14

[4]
Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite.

Drug Dev Ind Pharm. 2015

[5]
Colloidal lipid nanodispersion enriched hydrogel of antifungal agent for management of fungal infections: Comparative in-vitro, ex-vivo and in-vivo evaluation for oral and topical application.

Chem Phys Lipids. 2020-11

[6]
Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin.

Nanomedicine (Lond). 2013-8-30

[7]
In vitro release, ex vivo penetration, and in vivo dermatokinetics of ketoconazole-loaded solid lipid nanoparticles for topical delivery.

Drug Deliv Transl Res. 2022-7

[8]
Anti-ageing Potential of Metformin Loaded Fennel Oil-Based Nanoemulgel: A Promising Novel Approach for Ultraviolet B-Induced Ageing.

Int J Pharm. 2025-5-15

[9]
Formulation and Pathohistological Study of Mizolastine-Solid Lipid Nanoparticles-Loaded Ocular Hydrogels.

Int J Nanomedicine. 2021

[10]
Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo.

Drug Dev Ind Pharm. 2017-1

引用本文的文献

[1]
Galactose-Functionalized Gold Nanoparticles Targeting Membrane Transporters for the Glutathione Delivery to Brain Cancer Cells.

Chembiochem. 2025-7-11

[2]
Enhancing the Oral Bioavailability of Glutathione Using Innovative Analogue Approaches.

Pharmaceutics. 2025-3-18

本文引用的文献

[1]
The versatility of peptide hydrogels: From self-assembly to drug delivery applications.

J Pept Sci. 2025-2

[2]
Skin senescence-from basic research to clinical practice.

Front Med (Lausanne). 2024-10-18

[3]
PROTACs Targeting Epigenetic Proteins.

Acta Mater Med. 2023-10-26

[4]
Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation.

Carbohydr Polym. 2024-11-1

[5]
Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products.

Biomaterials. 2025-1

[6]
High-Intensity Focused Ultrasound Enhances Drug Penetration into the Human Skin in the Franz Diffusion Cell.

Clin Cosmet Investig Dermatol. 2024-7-23

[7]
Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment.

J Mater Chem B. 2024-8-22

[8]
Nanomotor-hydrogel Delivery System with Enhanced Antibacterial Performance for Wound Treatment.

Langmuir. 2024-7-17

[9]
Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations.

Pharmaceutics. 2024-6-16

[10]
Cellular Uptake and Transport Mechanism Investigations of PEGylated Niosomes for Improving the Oral Delivery of Thymopentin.

Pharmaceutics. 2024-3-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索