Renner David M, Parenti Nicholas A, Bracci Nicole, Weiss Susan R
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Viruses. 2025 Jan 16;17(1):120. doi: 10.3390/v17010120.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize viral replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of growth arrest and DNA damage-inducible protein (GADD34) expression, an inducible protein phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, constitutive repressor of eIF2α phosphorylation (CReP), dramatically reduced HCoV-OC43 replication. Combining GADD34 knockout with CReP knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation.
β冠状病毒属包含七种人类冠状病毒中的五种,使其成为为未来病毒出现做准备的一个特别关键的研究领域。我们利用了三种人类β冠状病毒,每种亚属各一种——HCoV-OC43(包膜病毒)、SARS-CoV-2(沙贝病毒)和MERS-CoV(美贝病毒)——来研究β冠状病毒与整合应激反应(ISR)/未折叠蛋白反应(UPR)的PKR样内质网激酶(PERK)途径的相互作用。PERK途径会因内质网(ER)中大量未折叠蛋白而被激活,导致真核翻译起始因子2α(eIF2α)磷酸化及翻译衰减。我们证明,MERS-CoV、HCoV-OC43和SARS-CoV-2均激活PERK并诱导p-eIF2α下游的反应,而只有SARS-CoV-2在感染期间诱导可检测到的p-eIF2α。使用一种eIF2α去磷酸化的小分子抑制剂,我们提供证据表明MERS-CoV和HCoV-OC43通过p-eIF2α去磷酸化使病毒复制最大化。有趣的是,生长停滞和DNA损伤诱导蛋白(GADD34)表达的基因敲除,一种诱导型蛋白磷酸酶1(PP1)的相互作用伴侣,其靶向eIF2α进行去磷酸化,并未显著改变HCoV-OC43或SARS-CoV-2的复制,而组成型PP1伴侣、eIF2α磷酸化的组成型阻遏物(CReP)的小干扰RNA(siRNA)敲低则显著降低了HCoV-OC43的复制。将GADD34敲除与CReP敲低相结合对HCoV-OC43的复制影响最大,而SARS-CoV-2的复制不受影响。总体而言,我们得出结论,eIF2α去磷酸化对于MERS-CoV和HCoV-OC43感染期间的高效蛋白质产生和复制至关重要。然而,SARS-CoV-2似乎对p-eIF2α不敏感,并且在感染期间甚至可能下调去磷酸化以限制宿主翻译。