Suppr超能文献

机器学习在非晶态合金中的应用。

Application of Machine Learning in Amorphous Alloys.

作者信息

Zhang Like, Zhang Huangyou, Ji Boyan, Liu Leqing, Liu Xianlan, Chen Ding

机构信息

College of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, China.

College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.

出版信息

Materials (Basel). 2025 Apr 13;18(8):1771. doi: 10.3390/ma18081771.

Abstract

In the past few decades, traditional methods for developing amorphous alloys, such as empirical trial-and-error approaches and density functional theory (DFT)-based calculations, have enabled researchers to explore numerous amorphous alloy systems and investigate their properties. However, these methods are increasingly unable to meet the demands of modern research due to their long development cycles and low efficiency. In contrast, machine learning (ML) has gained widespread adoption in the design, analysis, and property prediction of amorphous alloys due to its advantages of low experimental cost, powerful performance, and short development cycles. This review focuses on four key applications of ML in amorphous alloys: (1) prediction of amorphous alloy phases, (2) prediction of amorphous composite phases, (3) prediction of glass-forming ability (GFA), and (4) prediction of material properties. Finally, we outline future directions for ML in materials science, including the development of more sophisticated models, integration with high-throughput experimentation, and the creation of standardized data-sharing platforms. These insights provide potential research directions and frameworks for subsequent studies in this field.

摘要

在过去几十年里,开发非晶合金的传统方法,如经验试错法和基于密度泛函理论(DFT)的计算,使研究人员能够探索众多非晶合金体系并研究其性能。然而,由于这些方法开发周期长、效率低,越来越无法满足现代研究的需求。相比之下,机器学习(ML)因其实验成本低、性能强大和开发周期短的优势,在非晶合金的设计、分析和性能预测中得到了广泛应用。本综述聚焦于机器学习在非晶合金中的四个关键应用:(1)非晶合金相预测,(2)非晶复合材料相预测,(3)玻璃形成能力(GFA)预测,以及(4)材料性能预测。最后,我们概述了机器学习在材料科学中的未来发展方向,包括开发更复杂的模型、与高通量实验相结合,以及创建标准化数据共享平台。这些见解为该领域后续研究提供了潜在的研究方向和框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a498/12029083/057498f6473b/materials-18-01771-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验