Suppr超能文献

与宫颈癌预后、临床意义及免疫微环境特征相关的趋化因子相关基因特征的构建与验证

Construction and validation of a chemokine-related gene signature associated with prognosis, clinical significance, and immune microenvironment characteristics in cervical cancer.

作者信息

Huang Tianjiao, Cao Renshuang, Gao Cong, Luo Jie, Zhou Zhiyu, Ma Kun

机构信息

The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China.

Respiratory Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China.

出版信息

Discov Oncol. 2025 Jun 15;16(1):1114. doi: 10.1007/s12672-025-02973-7.

Abstract

BACKGROUND

Cervical cancer (CC) remains a prevalent malignancy with significant mortality among women, highlighting the urgent need for reliable prognostic tools. While chemokines have emerged as pivotal regulators in tumor progression, their potential in constructing prognostic models for CC remains underexplored. This study aimed to develop a chemokine-related gene signature for outcome prediction and therapeutic guidance in CC patients.

METHODS

Transcriptomic data from The Cancer Genome Atlas (TCGA) cervical cancer cohort were analyzed to identify differentially expressed chemokine-related genes. Prognostic genes were screened through univariate Cox, multivariate Cox, and LASSO regression analyses, followed by the development of a risk stratification model. The model's clinical relevance was evaluated by assessing its correlations with clinicopathological features, immune profiles, pathway enrichment, and therapeutic responses. A nomogram integrating risk scores and clinical parameters was constructed for survival prediction.

RESULTS

A nine-gene signature (CCL17, CXCL8, TNF, FOXP3, CXCL1, CCL20, ITGA5, CXCL3, CCR7) was established as an independent prognostic indicator. Kaplan-Meier analysis revealed significantly shorter overall survival (OS) and progression-free survival (PFS) in high-risk patients compared to low-risk counterparts (P < 0.05). Multivariate Cox regression confirmed the signature's independence from conventional clinical variables (P < 0.05). The nomogram demonstrated robust predictive accuracy, with 1-, 3-, and 5-year survival AUC values of 0.805, 0.729, and 0.710, respectively. Distinct immune cell infiltration patterns were observed between risk groups, with low-risk patients exhibiting enhanced potential for immunotherapy and chemotherapy responsiveness.

CONCLUSION

This study presents a clinically applicable prognostic model based on chemokine-related genes, providing insights for risk stratification and therapeutic decision-making in CC. Further validation through multicenter cohorts and mechanistic investigations of the identified genes are warranted to advance precision oncology strategies.

摘要

背景

宫颈癌(CC)仍是一种在女性中普遍存在且死亡率颇高的恶性肿瘤,凸显了对可靠预后工具的迫切需求。尽管趋化因子已成为肿瘤进展的关键调节因子,但其在构建CC预后模型方面的潜力仍未得到充分探索。本研究旨在开发一种与趋化因子相关的基因特征,用于预测CC患者的预后并指导治疗。

方法

分析来自癌症基因组图谱(TCGA)宫颈癌队列的转录组数据,以鉴定差异表达的趋化因子相关基因。通过单变量Cox、多变量Cox和LASSO回归分析筛选预后基因,随后构建风险分层模型。通过评估该模型与临床病理特征、免疫图谱、通路富集和治疗反应的相关性,来评价其临床相关性。构建了一个整合风险评分和临床参数的列线图用于生存预测。

结果

建立了一个由九个基因组成的特征(CCL17、CXCL8、TNF、FOXP3、CXCL1、CCL20、ITGA5、CXCL3、CCR7)作为独立的预后指标。Kaplan-Meier分析显示,与低风险患者相比,高风险患者的总生存期(OS)和无进展生存期(PFS)显著缩短(P < 0.05)。多变量Cox回归证实该特征独立于传统临床变量(P < 0.05)。列线图显示出强大的预测准确性,1年、3年和5年生存的AUC值分别为0.805、0.729和0.710。在风险组之间观察到不同的免疫细胞浸润模式,低风险患者表现出更强的免疫治疗和化疗反应潜力。

结论

本研究提出了一种基于趋化因子相关基因的临床适用预后模型,为CC的风险分层和治疗决策提供了见解。有必要通过多中心队列进一步验证,并对所鉴定基因进行机制研究,以推进精准肿瘤学策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e68a/12167734/f7468fbc55a6/12672_2025_2973_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验