Suppr超能文献

人工智能提高住院医师对儿童和青年上肢骨折的检出率。

Artificial intelligence improves resident detection of pediatric and young adult upper extremity fractures.

机构信息

Department of Radiology, New York University Langone Health, 301 E 17th St, New York, NY, 10003, USA.

Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

出版信息

Skeletal Radiol. 2024 Dec;53(12):2643-2651. doi: 10.1007/s00256-024-04698-0. Epub 2024 May 2.

Abstract

PURPOSE

We wished to evaluate if an open-source artificial intelligence (AI) algorithm ( https://www.childfx.com ) could improve performance of (1) subspecialized musculoskeletal radiologists, (2) radiology residents, and (3) pediatric residents in detecting pediatric and young adult upper extremity fractures.

MATERIALS AND METHODS

A set of evaluation radiographs drawn from throughout the upper extremity (elbow, hand/finger, humerus/shoulder/clavicle, wrist/forearm, and clavicle) from 240 unique patients at a single hospital was constructed (mean age 11.3 years, range 0-22 years, 37.9% female). Two fellowship-trained musculoskeletal radiologists, three radiology residents, and two pediatric residents were recruited as readers. Each reader interpreted each case initially without and then subsequently 3-4 weeks later with AI assistance and recorded if/where fracture was present.

RESULTS

Access to AI significantly improved area under the receiver operator curve (AUC) of radiology residents (0.768 [0.730-0.806] without AI to 0.876 [0.845-0.908] with AI, P < 0.001) and pediatric residents (0.706 [0.659-0.753] without AI to 0.844 [0.805-0.883] with AI, P < 0.001) in identifying fracture, respectively. There was no evidence of improvement for subspecialized musculoskeletal radiology attendings in identifying fracture (AUC 0.867 [0.832-0.902] to 0.890 [0.856-0.924], P = 0.093). There was no evidence of difference between overall resident AUC with AI and subspecialist AUC without AI (resident with AI 0.863, attending without AI AUC 0.867, P = 0.856). Overall physician radiograph interpretation time was significantly lower with AI (38.9 s with AI vs. 52.1 s without AI, P = 0.030).

CONCLUSION

An openly accessible AI model significantly improved radiology and pediatric resident accuracy in detecting pediatric upper extremity fractures.

摘要

目的

我们希望评估一个开源人工智能(AI)算法(https://www.childfx.com)是否可以提高(1)专业肌肉骨骼放射科医生、(2)放射科住院医师和(3)儿科住院医师检测小儿和青年上肢骨折的能力。

材料与方法

从一家医院的 240 名患者中抽取了一套完整的上肢(肘部、手部/手指、肱骨/肩部/锁骨、腕部/前臂和锁骨)评估 X 光片(平均年龄 11.3 岁,范围 0-22 岁,女性占 37.9%)。招募了两名 fellowship培训的肌肉骨骼放射科医生、三名放射科住院医师和两名儿科住院医师作为读者。每位读者首先在没有 AI 辅助的情况下解释每个病例,然后在 3-4 周后再进行解释,并记录是否存在骨折。

结果

使用 AI 显著提高了放射科住院医师(无 AI 时 AUC 为 0.768 [0.730-0.806],有 AI 时为 0.876 [0.845-0.908],P<0.001)和儿科住院医师(无 AI 时 AUC 为 0.706 [0.659-0.753],有 AI 时为 0.844 [0.805-0.883],P<0.001)识别骨折的能力。在识别骨折方面,专业肌肉骨骼放射科医生并没有表现出改善(AUC 从 0.867 [0.832-0.902]到 0.890 [0.856-0.924],P=0.093)。在 AI 辅助下,住院医师整体 AUC 与专科医师无 AI 时 AUC 之间没有差异(有 AI 的住院医师 AUC 为 0.863,无 AI 的专科医师 AUC 为 0.867,P=0.856)。整体医生阅片时间显著缩短(有 AI 时为 38.9 秒,无 AI 时为 52.1 秒,P=0.030)。

结论

一个开放获取的 AI 模型显著提高了放射科和儿科住院医师检测小儿上肢骨折的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验