Papadiamantis Anastasios G, Klaessig Frederick C, Exner Thomas E, Hofer Sabine, Hofstaetter Norbert, Himly Martin, Williams Marc A, Doganis Philip, Hoover Mark D, Afantitis Antreas, Melagraki Georgia, Nolan Tracy S, Rumble John, Maier Dieter, Lynch Iseult
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
Novamechanics Ltd., 1065 Nicosia, Cyprus.
Nanomaterials (Basel). 2020 Oct 15;10(10):2033. doi: 10.3390/nano10102033.
The emergence of nanoinformatics as a key component of nanotechnology and nanosafety assessment for the prediction of engineered nanomaterials (NMs) properties, interactions, and hazards, and for grouping and read-across to reduce reliance on animal testing, has put the spotlight firmly on the need for access to high-quality, curated datasets. To date, the focus has been around what constitutes data quality and completeness, on the development of minimum reporting standards, and on the FAIR (findable, accessible, interoperable, and reusable) data principles. However, moving from the theoretical realm to practical implementation requires human intervention, which will be facilitated by the definition of clear roles and responsibilities across the complete data lifecycle and a deeper appreciation of what metadata is, and how to capture and index it. Here, we demonstrate, using specific worked case studies, how to organise the nano-community efforts to define metadata schemas, by organising the data management cycle as a joint effort of all players (data creators, analysts, curators, managers, and customers) supervised by the newly defined role of data shepherd. We propose that once researchers understand their tasks and responsibilities, they will naturally apply the available tools. Two case studies are presented (modelling of particle agglomeration for dose metrics, and consensus for NM dissolution), along with a survey of the currently implemented metadata schema in existing nanosafety databases. We conclude by offering recommendations on the steps forward and the needed workflows for metadata capture to ensure FAIR nanosafety data.
纳米信息学作为纳米技术和纳米安全评估的关键组成部分出现,用于预测工程纳米材料(NMs)的性质、相互作用和危害,以及用于分组和类推以减少对动物试验的依赖,这使得获取高质量、经过整理的数据集的需求成为焦点。迄今为止,重点一直围绕数据质量和完整性的构成、最低报告标准的制定以及FAIR(可查找、可访问、可互操作和可重用)数据原则。然而,从理论领域转向实际实施需要人为干预,这将通过在完整的数据生命周期中定义明确的角色和职责以及更深入地理解元数据是什么以及如何捕获和索引它来促进。在这里,我们通过具体的实际案例研究展示了如何通过将数据管理周期组织为所有参与者(数据创建者、分析师、策展人、管理者和客户)在新定义的数据牧羊人角色监督下的共同努力,来组织纳米社区定义元数据模式的工作。我们建议,一旦研究人员了解了他们的任务和责任,他们将自然地应用可用工具。本文介绍了两个案例研究(用于剂量指标的颗粒团聚建模和纳米材料溶解的共识),以及对现有纳米安全数据库中当前实施的元数据模式的调查。我们通过就元数据捕获的前进步骤和所需工作流程提供建议来得出结论,以确保FAIR纳米安全数据。