Lehr Konrad, Oosterlinck Baptiste, Then Chee Kin, Gemmell Matthew R, Gedgaudas Rolandas, Bornschein Jan, Kupcinskas Juozas, Smet Annemieke, Hold Georgina, Link Alexander
Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
mSystems. 2025 Feb 18;10(2):e0135824. doi: 10.1128/msystems.01358-24. Epub 2025 Jan 28.
Microbiome analysis has become a crucial tool for basic and translational research due to its potential for translation into clinical practice. However, there is ongoing controversy regarding the comparability of different bioinformatic analysis platforms and a lack of recognized standards, which might have an impact on the translational potential of results. This study investigates how the performance of different microbiome analysis platforms impacts the final results of mucosal microbiome signatures. Across five independent research groups, we compared three distinct and frequently used microbiome analysis bioinformatic packages (DADA2, MOTHUR, and QIIME2) on the same subset of fastQ files. The source data set encompassed 16S rRNA gene raw sequencing data (V1-V2) from gastric biopsy samples of clinically well-defined gastric cancer (GC) patients ( = 40; with and without [] infection) and controls ( = 39, with and without infection). Independent of the applied protocol, status, microbial diversity and relative bacterial abundance were reproducible across all platforms, although differences in performance were detected. Furthermore, alignment of the filtered sequences to the old and new taxonomic databases (i.e., Ribosomal Database Project, Greengenes, and SILVA) had only a limited impact on the taxonomic assignment and thus on global analytical outcomes. Taken together, our results clearly demonstrate that different microbiome analysis approaches from independent expert groups generate comparable results when applied to the same data set. This is crucial for interpreting respective studies and underscores the broader applicability of microbiome analysis in clinical research, provided that robust pipelines are utilized and thoroughly documented to ensure reproducibility.IMPORTANCEMicrobiome analysis is one of the most important tools for basic and translational research due to its potential for translation into clinical practice. However, there is an ongoing controversy about the comparability of different bioinformatic analysis platforms and a lack of recognized standards. In this study, we investigate how the performance of different microbiome analysis platforms affects the final results of mucosal microbiome signatures. Five independent research groups used three different and commonly used bioinformatics packages for microbiome analysis on the same data set and compared the results. This data set included microbiome sequencing data from gastric biopsy samples of GC patients. Regardless of the protocol used, status, microbial diversity, and relative bacterial abundance were reproducible across all platforms. The results show that different microbiome analysis approaches provide comparable results. This is crucial for the interpretation of corresponding studies and underlines the broader applicability of microbiome analysis.
由于微生物组分析具有转化为临床实践的潜力,它已成为基础研究和转化研究的关键工具。然而,不同生物信息分析平台的可比性仍存在争议,且缺乏公认的标准,这可能会影响研究结果的转化潜力。本研究调查了不同微生物组分析平台的性能如何影响黏膜微生物组特征的最终结果。我们在五个独立研究小组中,对相同子集的fastQ文件,比较了三种不同且常用的微生物组分析生物信息学软件包(DADA2、MOTHUR和QIIME2)。源数据集包含来自临床明确的胃癌(GC)患者(n = 40;有和无[]感染)和对照(n = 39,有和无感染)胃活检样本的16S rRNA基因原始测序数据(V1-V2)。尽管检测到性能存在差异,但所有平台上的幽门螺杆菌状态、微生物多样性和相对细菌丰度均可重复,且与所应用的方案无关。此外,将过滤后的序列与新旧分类数据库(即核糖体数据库项目、Greengenes和SILVA)进行比对,对分类归属以及整体分析结果的影响有限。综上所述,我们的结果清楚地表明当应用于同一数据集时,来自独立专家组的不同微生物组分析方法会产生可比的结果。这对于解释各自的研究至关重要,并强调了微生物组分析在临床研究中的更广泛适用性,前提是使用稳健的流程并进行充分记录以确保可重复性。重要性由于微生物组分析具有转化为临床实践的潜力,它是基础研究和转化研究最重要的工具之一。然而,关于不同生物信息分析平台的可比性存在持续争议,且缺乏公认的标准。在本研究中,我们调查了不同微生物组分析平台的性能如何影响黏膜微生物组特征的最终结果。五个独立研究小组在同一数据集上使用三种不同且常用的生物信息学软件包进行微生物组分析,并比较了结果。该数据集包括GC患者胃活检样本的微生物组测序数据。无论使用何种方案,幽门螺杆菌状态、微生物多样性和相对细菌丰度在所有平台上均可重复。结果表明,不同的微生物组分析方法可提供可比的结果。这对于相应研究的解释至关重要,并强调了微生物组分析的更广泛适用性。