Suppr超能文献

双相情感障碍患者注意力网络中的异常网络同质性。

Abnormal network homogeneity in patients with bipolar disorder in attention network.

作者信息

Tan Mengling, Guo Yunxiao, Liu Sijun, Liu Wei, Cheng Liang, Gao Yujun, Ren Zhihong

机构信息

Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China.

Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China.

出版信息

Brain Imaging Behav. 2025 Apr;19(2):336-345. doi: 10.1007/s11682-025-00974-2. Epub 2025 Jan 28.

Abstract

Bipolar disorder (BD) is a complex psychiatric condition marked by significant mood fluctuations that deeply affect quality of life. Understanding the neural mechanisms underlying BD is critical for improving diagnostic accuracy and developing more effective treatments. This study utilized resting-state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity within the ventral and dorsal attention networks in 52 patients with BD and 51 healthy controls. Independent Component Analysis (ICA) was employed to establish network templates, while Network Homogeneity (NH) analysis facilitated the comparison of NH values across various brain regions. We examined the association of NH values with clinical measures, including the Hamilton Depression Scale, Perceptual Deficit Questionnaire, and Young Mania Scale. Results indicated that BD patients exhibited lower NH values in the right inferior temporal gyrus of the dorsal attention network and the right middle temporal gyrus of the ventral attention network compared to controls. Notably, NH values in the right superior marginal gyrus of the ventral network were higher in the BD group. Although no significant correlations were found between NH values and clinical symptoms, Support Vector Machine (SVM) analysis demonstrated over 60% accuracy in differentiating BD patients based on NH values. These findings highlight the potential of NH measures as biomarkers for BD, underscore the importance of advanced neuroimaging in uncovering the disorder's complex neural dynamics, and point to the challenges and need for further research to improve predictive accuracy.

摘要

双相情感障碍(BD)是一种复杂的精神疾病,其特征是显著的情绪波动,这对生活质量有深远影响。了解BD背后的神经机制对于提高诊断准确性和开发更有效的治疗方法至关重要。本研究利用静息态功能磁共振成像(rs-fMRI)来研究52例BD患者和51名健康对照者腹侧和背侧注意网络内的功能连接。采用独立成分分析(ICA)建立网络模板,而网络同质性(NH)分析有助于比较不同脑区的NH值。我们检查了NH值与临床指标的关联,包括汉密尔顿抑郁量表、感知缺陷问卷和杨氏躁狂量表。结果表明,与对照组相比,BD患者背侧注意网络的右下颞回和腹侧注意网络的右中颞回的NH值较低。值得注意的是,BD组腹侧网络右上缘回的NH值较高。虽然NH值与临床症状之间未发现显著相关性,但支持向量机(SVM)分析显示,基于NH值区分BD患者的准确率超过60%。这些发现突出了NH测量作为BD生物标志物的潜力,强调了先进神经影像学在揭示该疾病复杂神经动力学方面的重要性,并指出了提高预测准确性面临的挑战和进一步研究的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验