Suppr超能文献

病原体基因组监测与人工智能革命。

Pathogen genomic surveillance and the AI revolution.

作者信息

Lytras Spyros, Lamb Kieran D, Ito Jumpei, Grove Joe, Yuan Ke, Sato Kei, Hughes Joseph, Robertson David L

机构信息

Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom.

出版信息

J Virol. 2025 Feb 25;99(2):e0160124. doi: 10.1128/jvi.01601-24. Epub 2025 Jan 29.

Abstract

The unprecedented sequencing efforts during the COVID-19 pandemic paved the way for genomic surveillance to become a powerful tool for monitoring the evolution of circulating viruses. Herein, we discuss how a state-of-the-art artificial intelligence approach called protein language models (pLMs) can be used for effectively analyzing pathogen genomic data. We highlight examples of pLMs applied to predicting viral properties and evolution and lay out a framework for integrating pLMs into genomic surveillance pipelines.

摘要

在新冠疫情期间前所未有的测序工作为基因组监测成为监测流行病毒进化的强大工具铺平了道路。在此,我们讨论一种称为蛋白质语言模型(pLMs)的最先进人工智能方法如何可用于有效分析病原体基因组数据。我们重点介绍了pLMs应用于预测病毒特性和进化的实例,并提出了将pLMs整合到基因组监测流程中的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c787/11852828/2dcf881af01c/jvi.01601-24.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验