Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany.
RWTH Aachen University, Aachen, Germany.
J Nucl Med. 2023 Oct;64(10):1594-1602. doi: 10.2967/jnumed.123.265725. Epub 2023 Aug 10.
Evaluation of metabolic tumor volume (MTV) changes using amino acid PET has become an important tool for response assessment in brain tumor patients. MTV is usually determined by manual or semiautomatic delineation, which is laborious and may be prone to intra- and interobserver variability. The goal of our study was to develop a method for automated MTV segmentation and to evaluate its performance for response assessment in patients with gliomas. In total, 699 amino acid PET scans using the tracer -(2-[F]fluoroethyl)-l-tyrosine (F-FET) from 555 brain tumor patients at initial diagnosis or during follow-up were retrospectively evaluated (mainly glioma patients, 76%). F-FET PET MTVs were segmented semiautomatically by experienced readers. An artificial neural network (no new U-Net) was configured on 476 scans from 399 patients, and the network performance was evaluated on a test dataset including 223 scans from 156 patients. Surface and volumetric Dice similarity coefficients (DSCs) were used to evaluate segmentation quality. Finally, the network was applied to a recently published F-FET PET study on response assessment in glioblastoma patients treated with adjuvant temozolomide chemotherapy for a fully automated response assessment in comparison to an experienced physician. In the test dataset, 92% of lesions with increased uptake ( = 189) and 85% of lesions with iso- or hypometabolic uptake ( = 33) were correctly identified (F1 score, 92%). Single lesions with a contiguous uptake had the highest DSC, followed by lesions with heterogeneous, noncontiguous uptake and multifocal lesions (surface DSC: 0.96, 0.93, and 0.81 respectively; volume DSC: 0.83, 0.77, and 0.67, respectively). Change in MTV, as detected by the automated segmentation, was a significant determinant of disease-free and overall survival, in agreement with the physician's assessment. Our deep learning-based F-FET PET segmentation allows reliable, robust, and fully automated evaluation of MTV in brain tumor patients and demonstrates clinical value for automated response assessment.
评估肿瘤代谢体积(MTV)的变化已成为脑肿瘤患者反应评估的重要工具。MTV 通常通过手动或半自动勾画来确定,这既费力又容易受到观察者内和观察者间的变异性的影响。我们的研究目的是开发一种自动 MTV 分割方法,并评估其在胶质瘤患者反应评估中的性能。
共回顾性评估了 555 例初诊或随访时使用示踪剂[2-(18F)-氟乙基]-L-酪氨酸(F-FET)的脑肿瘤患者的 699 次氨基酸 PET 扫描(主要为胶质瘤患者,76%)。F-FET PET MTV 由有经验的读者半自动分割。在 399 例患者的 476 次扫描中配置了人工神经网络(无新 U-Net),并在包括 156 例患者的 223 次扫描的测试数据集上评估了网络性能。使用表面和体积 Dice 相似系数(DSC)来评估分割质量。最后,将该网络应用于最近发表的一项关于接受替莫唑胺辅助化疗治疗胶质母细胞瘤患者的 F-FET PET 反应评估的研究中,与有经验的医生进行全自动反应评估进行比较。
在测试数据集,92%的摄取增加的病灶(=189)和 85%的等或低代谢摄取的病灶(=33)被正确识别(F1 评分,92%)。具有连续摄取的单个病灶具有最高的 DSC,其次是具有异质、非连续摄取的病灶和多灶性病灶(表面 DSC:分别为 0.96、0.93 和 0.81;体积 DSC:分别为 0.83、0.77 和 0.67)。自动分割检测到的 MTV 变化与医生的评估一致,是无病生存和总生存的显著决定因素。
我们基于深度学习的 F-FET PET 分割方法可实现脑肿瘤患者 MTV 的可靠、稳健和全自动评估,并显示出用于自动反应评估的临床价值。