Demuth Stanislas, De Sèze Jérôme, Edan Gilles, Ziemssen Tjalf, Simon Françoise, Gourraud Pierre-Antoine
INSERM U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 30 Bd Jean Monnet, Nantes, 44093, France, 33 2 40 08 74 10.
INSERM CIC 1434 Clinical Investigation Center, University Hospital of Strasbourg, Strasbourg, France.
JMIR Med Inform. 2025 Jan 28;13:e53542. doi: 10.2196/53542.
Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical "digital twin" has recently become popular to designate digital representations of patients as a support for a wide range of data science applications. However, the concept is ambiguous when it comes to practical implementations. Here, we propose a medical digital twin framework with a data-centric approach. We argue that a single digital representation of patients cannot support all the data uses of digital twins for technical and regulatory reasons. Instead, we propose a data architecture leveraging three main families of digital representations: (1) multimodal dashboards integrating various raw health records at points of care to assist with perception and documentation, (2) virtual patients, which provide nonsensitive data for collective secondary uses, and (3) individual predictions that support clinical decisions. For a given patient, multiple digital representations may be generated according to the different clinical pathways the patient goes through, each tailored to balance the trade-offs associated with the respective intended uses. Therefore, our proposed framework conceives the medical digital twin as a data architecture leveraging several digital representations of patients along clinical pathways.
精准医学涉及向个性化数据驱动的临床决策的范式转变。医学“数字孪生”的概念最近开始流行,它指的是患者的数字表示形式,以支持广泛的数据科学应用。然而,在实际应用中,这一概念并不明确。在此,我们提出一种以数据为中心的医学数字孪生框架。我们认为,由于技术和监管原因,单一的患者数字表示形式无法支持数字孪生的所有数据用途。相反,我们提出一种数据架构,利用三类主要的数字表示形式:(1)多模式仪表板,在医疗点整合各种原始健康记录,以辅助感知和记录;(2)虚拟患者,提供用于集体二次使用的非敏感数据;(3)支持临床决策的个体预测。对于给定患者,可根据患者所经历的不同临床路径生成多种数字表示形式,每种形式都经过定制,以平衡与各自预期用途相关的权衡。因此,我们提出的框架将医学数字孪生视为一种数据架构,它沿着临床路径利用患者的多种数字表示形式。