Scribano Parada María de la Paz, González Palau Fátima, Valladares Rodríguez Sonia, Rincon Mariano, Rico Barroeta Maria José, García Rodriguez Marta, Bueno Aguado Yolanda, Herrero Blanco Ana, Díaz-López Estela, Bachiller Mayoral Margarita, Losada Durán Raquel
Centro de Neurorrehabilitación González Palau, Córdoba, Argentina.
Secretarìa de Investigación, Vicerrectorado de Investigación, Innovación y Posgrado, Universidad Siglo 21, Cordoba, Argentina.
JMIR Med Inform. 2025 Jan 28;13:e62914. doi: 10.2196/62914.
This review explores the potential of virtual reality (VR) and artificial intelligence (AI) to identify preclinical cognitive markers of Alzheimer disease (AD). By synthesizing recent studies, it aims to advance early diagnostic methods to detect AD before significant symptoms occur.
Research emphasizes the significance of early detection in AD during the preclinical phase, which does not involve cognitive impairment but nevertheless requires reliable biomarkers. Current biomarkers face challenges, prompting the exploration of cognitive behavior indicators beyond episodic memory.
Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we searched Scopus, PubMed, and Google Scholar for studies on neuropsychiatric disorders utilizing conversational data.
Following an analysis of 38 selected articles, we highlight verbal episodic memory as a sensitive preclinical AD marker, with supporting evidence from neuroimaging and genetic profiling. Executive functions precede memory decline, while processing speed is a significant correlate. The potential of VR remains underexplored, and AI algorithms offer a multidimensional approach to early neurocognitive disorder diagnosis.
Emerging technologies like VR and AI show promise for preclinical diagnostics, but thorough validation and regulation for clinical safety and efficacy are necessary. Continued technological advancements are expected to enhance early detection and management of AD.
本综述探讨虚拟现实(VR)和人工智能(AI)识别阿尔茨海默病(AD)临床前认知标志物的潜力。通过综合近期研究,旨在推进早期诊断方法,以便在出现明显症状之前检测出AD。
研究强调了AD临床前阶段早期检测的重要性,此阶段不涉及认知障碍,但仍需要可靠的生物标志物。当前的生物标志物面临挑战,促使人们探索除情景记忆之外的认知行为指标。
我们使用PRISMA(系统评价和Meta分析的首选报告项目)指南,在Scopus、PubMed和谷歌学术上搜索利用对话数据研究神经精神疾病的文献。
在对38篇选定文章进行分析后,我们强调言语情景记忆是一种敏感的临床前AD标志物,神经影像学和基因分析提供了支持证据。执行功能在记忆衰退之前出现,而处理速度与之显著相关。VR的潜力仍未得到充分探索,AI算法为早期神经认知障碍诊断提供了多维方法。
VR和AI等新兴技术在临床前诊断方面显示出前景,但需要进行全面验证以及对临床安全性和有效性进行监管。预计技术的持续进步将加强AD的早期检测和管理。