Tagliazucchi Mario, Müller Marcus
Departamento de Química Inorgánica Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, C1428EGA Buenos Aires, Argentina.
Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Ciudad Universitaria, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, C1428EGA Buenos Aires, Argentina.
ACS Appl Mater Interfaces. 2025 Feb 12;17(6):9278-9288. doi: 10.1021/acsami.4c18838. Epub 2025 Jan 30.
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt. Blocking of the anion fluxes by the electrodes conditions polarizes the cells and results in an inhomogeneous salt-concentration profile. This gradient of salt concentration triggers lamellae-to-disorder and disorder-to-lamellae transitions near the electrodes, in good agreement with previous experimental observations. The effects of the selectivity of the electrode surface, the salt concentration and the voltage applied to the cell are systematically studied. For PEO-selective surfaces, the lamellae parallel to the electrode that forms at low applied potentials transition to a bicontinuous morphology at high applied potentials in order to allow ion transport through the insulating PS layers. The formation of this dissipative structure, which is unexpected considering the equilibrium behavior of the material, is in line with the principle of maximum entropy production. In summary, the transport and morphology in PEO-PS electrolytes are strongly coupled: ionic currents influence self-assembly, which in turn modulates the ionic fluxes in the cell.
引入了一种单链平均场(SCMF)算法来研究非平衡条件下的嵌段共聚物电解质。该方法将聚合物基于粒子的描述与离子通量的广义扩散方程自洽地结合起来,从而利用了快速离子运动与缓慢聚合物弛豫和自组装之间的时间尺度分离。我们应用这种计算方法来研究含有聚环氧乙烷 - 聚苯乙烯(PEO - PS)嵌段共聚物并添加锂盐的电化学电池中的离子通量。电极对阴离子通量的阻挡使电池极化,并导致盐浓度分布不均匀。这种盐浓度梯度在电极附近引发片层到无序以及无序到片层的转变,这与先前的实验观察结果非常吻合。系统地研究了电极表面选择性、盐浓度和施加到电池上的电压的影响。对于PEO选择性表面,在低施加电位下形成的与电极平行的片层在高施加电位下转变为双连续形态,以便允许离子通过绝缘的PS层传输。考虑到材料的平衡行为,这种耗散结构的形成出乎意料,但符合最大熵产生原理。总之,PEO - PS电解质中的传输和形态强烈耦合:离子电流影响自组装,而自组装又反过来调节电池中的离子通量。