Suppr超能文献

衰减全反射傅里叶变换红外光谱法在血脂半定量及代谢综合征特征分析中的应用

Application of attenuated total reflection-Fourier transform infrared spectroscopy in semi-quantification of blood lipids and characterization of the metabolic syndrome.

作者信息

Gau Tz-Ping, Wen Jen-Hung, Lu I-Wei, Huang Pei-Yu, Lee Yao-Chang, Lee Wei-Po, Lee Hsiang-Chun

机构信息

Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.

Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.

出版信息

PLoS One. 2025 Jan 30;20(1):e0316522. doi: 10.1371/journal.pone.0316522. eCollection 2025.

Abstract

BACKGROUND/PURPOSE: Dyslipidemia, a hallmark of metabolic syndrome (MetS), contributes to atherosclerotic and cardiometabolic disorders. Due to days-long analysis, current clinical procedures for cardiotoxic blood lipid monitoring are unmet. This study used AI-assisted attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to identify MetS and precisely quantify multiple blood lipid levels with a blood sample of 0.5 µl and the assaying time is approximately 10 minutes.

METHODS

ATR-FTIR spectroscopy with 1738 data points in the spectral range of 4000-650 cm-1 was used to analyze the blood samples. An adaptive synthetic technique was used to establish a prevalence-balanced dataset. LDL-C, HDL-C, TG, VLDL-C, and cholesterol levels were defined as the predicted targets of lipid absorption profiles. Linear regression (LR), gradient boosting regression tree (GBT), and histogram-based gradient boosting regression tree (HGBTR) were used to train the models. Lipid profile value prediction was evaluated using R2 and MAE, whereas MetS prediction was evaluated using area under the ROC curve.

RESULTS

A total of 150 blood samples from 25 individuals without MetS and 25 with MetS yielded 491 spectral measurements. In the regression models, HGBT best predicted the targets of TG, CHOL, HDL-C, LDL-C, and VLDL-C with R2 values of 0.854 (0.12), 0.684 (0.08), 0.758 (0.10), and 0.419 (0.11), respectively. The classification model with the greatest AUC was RF (0.978), followed by HGBT (0.972) and GBT (0.967).

CONCLUSION

The results of this study revealed that predicting MetS and determining blood lipid levels with high R2 values and limited errors are feasible for monitoring during therapy and intervention.

摘要

背景/目的:血脂异常是代谢综合征(MetS)的一个标志,会导致动脉粥样硬化和心脏代谢紊乱。由于需要数天的分析时间,目前用于心脏毒性血脂监测的临床程序无法满足需求。本研究使用人工智能辅助衰减全反射傅里叶变换红外(ATR-FTIR)光谱技术,通过0.5微升血样识别代谢综合征,并精确量化多种血脂水平,检测时间约为10分钟。

方法

采用在4000-650 cm-1光谱范围内有1738个数据点的ATR-FTIR光谱技术分析血样。使用自适应合成技术建立患病率平衡数据集。将低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、甘油三酯(TG)、极低密度脂蛋白胆固醇(VLDL-C)和胆固醇水平定义为脂质吸收谱的预测目标。使用线性回归(LR)、梯度提升回归树(GBT)和基于直方图的梯度提升回归树(HGBTR)训练模型。使用R2和平均绝对误差(MAE)评估脂质谱值预测,而使用ROC曲线下面积评估代谢综合征预测。

结果

来自25名无代谢综合征个体和25名有代谢综合征个体的150份血样共产生491次光谱测量结果。在回归模型中,HGBT对TG、CHOL、HDL-C、LDL-C和VLDL-C目标的预测效果最佳,R2值分别为0.854(0.12)、0.684(0.08)、0.758(0.10)和0.419(0.11)。AUC最大的分类模型是随机森林(RF,0.978),其次是HGBT(0.972)和GBT(0.967)。

结论

本研究结果表明,以高R2值和有限误差预测代谢综合征并确定血脂水平,对于治疗和干预期间的监测是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/11781649/aeb931259a3d/pone.0316522.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验