Chen Ke, Kunkel Christian, Cheng Bingqing, Reuter Karsten, Margraf Johannes T
Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany
Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 D-85747 Garching Germany.
Chem Sci. 2023 Apr 10;14(18):4913-4922. doi: 10.1039/d3sc00841j. eCollection 2023 May 10.
Machine learning (ML) has been widely applied to chemical property prediction, most prominently for the energies and forces in molecules and materials. The strong interest in predicting energies in particular has led to a 'local energy'-based paradigm for modern atomistic ML models, which ensures size-extensivity and a linear scaling of computational cost with system size. However, many electronic properties (such as excitation energies or ionization energies) do not necessarily scale linearly with system size and may even be spatially localized. Using size-extensive models in these cases can lead to large errors. In this work, we explore different strategies for learning intensive and localized properties, using HOMO energies in organic molecules as a representative test case. In particular, we analyze the pooling functions that atomistic neural networks use to predict molecular properties, and suggest an orbital weighted average (OWA) approach that enables the accurate prediction of orbital energies and locations.
机器学习(ML)已被广泛应用于化学性质预测,在分子和材料的能量与力的预测方面表现尤为突出。对预测能量的浓厚兴趣尤其催生了现代原子级机器学习模型基于“局部能量”的范式,该范式确保了尺寸扩展性以及计算成本随系统规模的线性缩放。然而,许多电子性质(如激发能或电离能)不一定随系统规模线性缩放,甚至可能在空间上是局部化的。在这些情况下使用尺寸扩展性模型可能会导致较大误差。在这项工作中,我们以有机分子中的最高占据分子轨道(HOMO)能量作为代表性测试案例,探索学习密集型和局部化性质的不同策略。特别是,我们分析了原子神经网络用于预测分子性质的池化函数,并提出了一种轨道加权平均(OWA)方法,该方法能够准确预测轨道能量和位置。