Dominicus Livia, Zandstra Melissa, Franse Josephine, Otte Wim, Hillebrand Arjan, de Graaf Simone, Ambrosen Karen, Glenthøj Birte Yding, Zalesky Andrew, Borup Bojesen Kirsten, Sørensen Mikkel, Scheepers Floortje, Stam Cornelis, Oranje Bob, Ebdrup Bjorn, van Dellen Edwin
Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, and Utrecht University, Utrecht, The Netherlands.
Psychiatry Clin Neurosci. 2025 Apr;79(4):187-196. doi: 10.1111/pcn.13791. Epub 2025 Feb 3.
Prompt diagnosis and intervention are crucial for first-episode psychosis (FEP) outcomes, but predicting the response to antipsychotics remains challenging. We studied whether adding electroencephalography (EEG) characteristics improves clinical prediction models for treatment response and whether EEG-based predictors are influenced by initial treatment.
We included 115 antipsychotic-naïve patients with FEP. Positive and Negative Syndrome Scale (PANSS) and sociodemographic items were included as clinical features. Additionally, we analyzed resting-state EEG data (n = 45) for (relative) power, functional connectivity, and network organization. Treatment response, measured as change in PANSS positive subscale scores (∆PANSS+), was predicted using a random forest regression model. We analyzed whether the most predictive EEG characteristics were influenced after treatment.
The clinical model explained 12% variance in symptom reduction in the training set and 32% in the validation set. Including EEG variables in the model led to a nonsignificant increase of 2% (total 34%) explained variance in symptom reduction. High hallucination symptom scores and a more hierarchical organization of alpha band networks (tree hierarchy) were associated with ∆PANSS+ reduction. The tree hierarchy in the alpha band decreased after medication. EEG source analysis revealed that this change was driven by alterations in the degree and centrality of frontal and parietal nodes in the functional brain network.
Both clinical and EEG characteristics can inform treatment response prediction in patients with FEP, but the combined model may not be beneficial over a clinical model. Nevertheless, adding a more objective marker such as EEG could be valuable in selected cases.
对于首发精神病(FEP)的预后而言,及时诊断和干预至关重要,但预测对抗精神病药物的反应仍然具有挑战性。我们研究了添加脑电图(EEG)特征是否能改善治疗反应的临床预测模型,以及基于EEG的预测指标是否受初始治疗的影响。
我们纳入了115例未使用过抗精神病药物的FEP患者。将阳性和阴性症状量表(PANSS)及社会人口学项目作为临床特征。此外,我们分析了静息态EEG数据(n = 45)的(相对)功率、功能连接和网络组织。使用随机森林回归模型预测以PANSS阳性分量表得分变化(∆PANSS +)衡量的治疗反应。我们分析了治疗后最具预测性的EEG特征是否受到影响。
临床模型在训练集中解释了症状减轻12%的方差,在验证集中解释了32%的方差。在模型中纳入EEG变量导致症状减轻解释方差无显著增加,仅增加了2%(总计34%)。幻觉症状高分和α波段网络更具层级性的组织(树状层级)与∆PANSS +降低相关。用药后α波段的树状层级降低。EEG源分析显示,这种变化是由功能性脑网络中额叶和顶叶节点的程度和中心性改变所驱动。
临床和EEG特征均可为FEP患者的治疗反应预测提供信息,但联合模型可能并不比临床模型更具优势。尽管如此,在某些特定情况下添加如EEG这样更客观的标志物可能是有价值的。