Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark.
H. Lundbeck A/S, Valby, Denmark.
Eur Arch Psychiatry Clin Neurosci. 2023 Dec;273(8):1785-1796. doi: 10.1007/s00406-023-01550-9. Epub 2023 Feb 2.
Schizophrenia is associated with aberrations in the Default Mode Network (DMN), but the clinical implications remain unclear. We applied data-driven, unsupervised machine learning based on resting-state electroencephalography (rsEEG) functional connectivity within the DMN to cluster antipsychotic-naïve patients with first-episode schizophrenia. The identified clusters were investigated with respect to psychopathological profile and cognitive deficits. Thirty-seven antipsychotic-naïve, first-episode patients with schizophrenia (mean age 24.4 (5.4); 59.5% males) and 97 matched healthy controls (mean age 24.0 (5.1); 52.6% males) underwent assessments of rsEEG, psychopathology, and cognition. Source-localized, frequency-dependent functional connectivity was estimated using Phase Lag Index (PLI). The DMN-PLI was factorized for each frequency band using principal component analysis. Clusters of patients were identified using a Gaussian mixture model and neurocognitive and psychopathological profiles of identified clusters were explored. We identified two clusters of patients based on the theta band (4-8 Hz), and two clusters based on the beta band (12-30 Hz). Baseline psychopathology could predict theta clusters with an accuracy of 69.4% (p = 0.003), primarily driven by negative symptoms. Five a priori selected cognitive functions conjointly predicted the beta clusters with an accuracy of 63.6% (p = 0.034). The two beta clusters displayed higher and lower DMN connectivity, respectively, compared to healthy controls. In conclusion, the functional connectivity within the DMN provides a novel, data-driven means to stratify patients into clinically relevant clusters. The results support the notion of biological subgroups in schizophrenia and endorse the application of data-driven methods to recognize pathophysiological patterns at earliest stage of this syndrome.
精神分裂症与默认模式网络 (DMN) 的异常有关,但临床意义仍不清楚。我们应用基于数据驱动的、无监督的机器学习方法,基于 DMN 中的静息态脑电图 (rsEEG) 功能连接,对首次发作的精神分裂症的抗精神病药物初治患者进行聚类。针对精神病理学特征和认知缺陷对识别出的聚类进行了研究。37 名抗精神病药物初治、首次发作的精神分裂症患者(平均年龄 24.4(5.4);59.5%为男性)和 97 名匹配的健康对照者(平均年龄 24.0(5.1);52.6%为男性)接受了 rsEEG、精神病理学和认知评估。使用相位滞后指数 (PLI) 估计源定位、频率相关的功能连接。使用主成分分析对每个频带的 DMN-PLI 进行因子分解。使用高斯混合模型识别患者聚类,并探讨识别聚类的神经认知和精神病理学特征。我们根据 theta 频段(4-8 Hz)和 beta 频段(12-30 Hz)确定了两个患者聚类。基线精神病理学可以以 69.4%的准确率预测 theta 聚类(p=0.003),主要由阴性症状驱动。五个预先选择的认知功能共同以 63.6%的准确率预测 beta 聚类(p=0.034)。与健康对照组相比,这两个 beta 聚类的 DMN 连接性分别较高和较低。总之,DMN 内的功能连接为将患者分为具有临床意义的聚类提供了一种新的、基于数据的方法。结果支持精神分裂症存在生物学亚群的观点,并支持应用基于数据的方法在该综合征的最早阶段识别病理生理模式。