Suppr超能文献

基于 CNN 的自定义 MKSCDDL 核的阿尔茨海默病和轻度认知障碍的多模态分类,具有透明决策的可解释诊断。

Multimodal classification of Alzheimer's disease and mild cognitive impairment using custom MKSCDDL kernel over CNN with transparent decision-making for explainable diagnosis.

机构信息

National Institute of Technology Tiruchirappalli, Tiruchirappalli, India.

University of Salerno, Fisciano, Italy.

出版信息

Sci Rep. 2024 Jan 20;14(1):1774. doi: 10.1038/s41598-024-52185-2.

Abstract

The study presents an innovative diagnostic framework that synergises Convolutional Neural Networks (CNNs) with a Multi-feature Kernel Supervised within-class-similar Discriminative Dictionary Learning (MKSCDDL). This integrative methodology is designed to facilitate the precise classification of individuals into categories of Alzheimer's Disease, Mild Cognitive Impairment (MCI), and Cognitively Normal (CN) statuses while also discerning the nuanced phases within the MCI spectrum. Our approach is distinguished by its robustness and interpretability, offering clinicians an exceptionally transparent tool for diagnosis and therapeutic strategy formulation. We use scandent decision trees to deal with the unpredictability and complexity of neuroimaging data. Considering that different people's brain scans are different, this enables the model to make more detailed individualised assessments and explains how the algorithm illuminates the specific neuroanatomical regions that are indicative of cognitive impairment. This explanation is beneficial for clinicians because it gives them concrete ideas for early intervention and targeted care. The empirical review of our model shows that it makes diagnoses with a level of accuracy that is unmatched, with a classification efficacy of 98.27%. This shows that the model is good at finding important parts of the brain that may be damaged by cognitive diseases.

摘要

该研究提出了一种创新的诊断框架,将卷积神经网络(CNNs)与多特征核监督的类内相似判别字典学习(MKSCDDL)相结合。这种综合方法旨在促进对阿尔茨海默病、轻度认知障碍(MCI)和认知正常(CN)个体进行精确分类,同时辨别 MCI 谱内的细微阶段。我们的方法具有稳健性和可解释性,为临床医生提供了一种非常透明的诊断和治疗策略制定工具。我们使用蔓生决策树来处理神经影像学数据的不可预测性和复杂性。考虑到不同人的大脑扫描是不同的,这使得模型能够进行更详细的个性化评估,并解释算法如何揭示表明认知障碍的特定神经解剖区域。这种解释对临床医生有益,因为它为他们提供了早期干预和有针对性护理的具体想法。对我们模型的实证研究表明,它的诊断准确性是无与伦比的,分类效果达到了 98.27%。这表明该模型善于发现可能因认知疾病而受损的大脑重要部位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/198b/10799876/bdf51d244ec8/41598_2024_52185_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验