Bensaid Radjaa, Labraoui Nabila, Abba Ari Ado Adamou, Saidi Hafida, Mboussam Emati Joel Herve, Maglaras Leandros
STIC Lab, Abou Bekr Belkaid Tlemcen University, Tlemcen, Algeria.
LRI Lab, Abou Bekr Belkaid Tlemcen University, Tlemcen, Algeria.
PeerJ Comput Sci. 2024 Dec 13;10:e2414. doi: 10.7717/peerj-cs.2414. eCollection 2024.
Smart healthcare systems are gaining increased practicality and utility, driven by continuous advancements in artificial intelligence technologies, cloud and fog computing, and the Internet of Things (IoT). However, despite these transformative developments, challenges persist within IoT devices, encompassing computational constraints, storage limitations, and attack vulnerability. These attacks target sensitive health information, compromise data integrity, and pose obstacles to the overall resilience of the healthcare sector. To address these vulnerabilities, Network-based Intrusion Detection Systems (NIDSs) are crucial in fortifying smart healthcare networks and ensuring secure use of IoMT-based applications by mitigating security risks. Thus, this article proposes a novel Secure and Authenticated Federated Learning-based NIDS framework using Blockchain (SA-FLIDS) for fog-IoMT-enabled smart healthcare systems. Our research aims to improve data privacy and reduce communication costs. Furthermore, we also address weaknesses in decentralized learning systems, like Sybil and Model Poisoning attacks. We leverage the blockchain-based Self-Sovereign Identity (SSI) model to handle client authentication and secure communication. Additionally, we use the Trimmed Mean method to aggregate data. This helps reduce the effect of unusual or malicious inputs when creating the overall model. Our approach is evaluated on real IoT traffic datasets such as CICIoT2023 and EdgeIIoTset. It demonstrates exceptional robustness against adversarial attacks. These findings underscore the potential of our technique to improve the security of IoMT-based healthcare applications.
在人工智能技术、云计算和雾计算以及物联网(IoT)不断进步的推动下,智能医疗系统正变得越来越实用和有用。然而,尽管有这些变革性的发展,物联网设备仍存在挑战,包括计算限制、存储局限和攻击脆弱性。这些攻击针对敏感的健康信息,破坏数据完整性,并对医疗保健部门的整体恢复能力构成障碍。为解决这些漏洞,基于网络的入侵检测系统(NIDS)对于加强智能医疗网络以及通过降低安全风险确保基于物联网医疗设备(IoMT)的应用程序的安全使用至关重要。因此,本文提出了一种新颖的基于区块链的安全认证联邦学习的NIDS框架(SA-FLIDS),用于支持雾物联网的智能医疗系统。我们的研究旨在提高数据隐私并降低通信成本。此外,我们还解决了分散学习系统中的弱点,如女巫攻击和模型中毒攻击。我们利用基于区块链的自主身份(SSI)模型来处理客户端认证和安全通信。此外,我们使用修剪均值方法来聚合数据。这有助于在创建整体模型时减少异常或恶意输入的影响。我们的方法在诸如CICIoT2023和EdgeIIoTset等真实物联网流量数据集上进行了评估。它展示了对对抗性攻击的卓越鲁棒性。这些发现强调了我们的技术在提高基于物联网医疗设备的医疗应用安全性方面的潜力。