Zehra Talat, Marino Joseph, Wang Wendy, Frantsuzov Grigoriy, Nadeem Saad
Jinnah Sindh Medical University, Karachi, Pakistan.
Memorial Sloan Kettering Cancer Center, New York, USA.
Med Image Comput Comput Assist Interv. 2024 Oct;15004:427-436. doi: 10.1007/978-3-031-72083-3_40. Epub 2024 Oct 14.
Histology slide digitization is becoming essential for telepathology (remote consultation), knowledge sharing (education), and using the state-of-the-art artificial intelligence algorithms (augmented/automated end-to-end clinical workflows). However, the cumulative costs of digital multi-slide high-speed brightfield scanners, cloud/on-premises storage, and personnel (IT and technicians) make the current slide digitization workflows out-of-reach for limited-resource settings, further widening the health equity gap; even single-slide manual scanning commercial solutions are costly due to hardware requirements (high-resolution cameras, high-spec PC/workstation, and support for only high-end microscopes). In this work, we present a new cloud slide digitization workflow for creating scanner-quality whole-slide images (WSIs) from uploaded low-quality videos, acquired from cheap and inexpensive microscopes with built-in cameras. Specifically, we present a pipeline to create stitched WSIs while automatically deblurring out-of-focus regions, upsampling input 10X images to 40X resolution, and reducing brightness/contrast and light-source illumination variations. We demonstrate the WSI creation efficacy from our workflow on World Health Organization-declared neglected tropical disease, Cutaneous Leishmaniasis (prevalent only in the poorest regions of the world and only diagnosed by sub-specialist dermatopathologists, rare in poor countries), as well as other common pathologies on core biopsies of breast, liver, duodenum, stomach and lymph node. The code and pretrained models will be accessible via our GitHub (https://github.com/nadeemlab/DeepLIIF), and the cloud platform will be available at https://deepliif.org for uploading microscope videos and downloading/viewing WSIs with shareable links (no sign-in required) for telepathology and knowledge sharing.
组织学切片数字化对于远程病理学(远程会诊)、知识共享(教育)以及使用最先进的人工智能算法(增强型/自动化的端到端临床工作流程)正变得至关重要。然而,数字多切片高速明场扫描仪、云/本地存储以及人员(信息技术人员和技术人员)的累积成本使得当前的切片数字化工作流程对于资源有限的环境来说遥不可及,进一步扩大了健康公平差距;甚至单切片手动扫描的商业解决方案由于硬件要求(高分辨率相机、高规格个人电脑/工作站,且仅支持高端显微镜)也成本高昂。在这项工作中,我们提出了一种新的云切片数字化工作流程,用于从上传的低质量视频创建扫描仪质量的全切片图像(WSIs),这些视频是从带有内置摄像头的廉价显微镜获取的。具体而言,我们提出了一个管道,用于创建拼接的WSIs,同时自动对失焦区域进行去模糊处理,将输入的10倍图像上采样到40倍分辨率,并减少亮度/对比度以及光源照明变化。我们展示了我们的工作流程在世界卫生组织宣布的被忽视热带病皮肤利什曼病(仅在世界最贫困地区流行,仅由专科皮肤病理学家诊断,在贫穷国家罕见)以及乳腺、肝脏、十二指肠、胃和淋巴结核心活检的其他常见病理学上创建WSIs的效果。代码和预训练模型可通过我们的GitHub(https://github.com/nadeemlab/DeepLIIF)获取,云平台将在https://deepliif.org上提供,用于上传显微镜视频以及下载/查看带有可共享链接(无需登录)的WSIs,以进行远程病理学和知识共享。