Suppr超能文献

一种用于视网膜疾病自动诊断的低复杂度高效深度学习模型。

A Low Complexity Efficient Deep Learning Model for Automated Retinal Disease Diagnosis.

作者信息

Chowa Sadia Sultana, Bhuiyan Md Rahad Islam, Payel Israt Jahan, Karim Asif, Khan Inam Ullah, Montaha Sidratul, Hasan Md Zahid, Jonkman Mirjam, Azam Sami

机构信息

Health Informatics Research Laboratory (HIRL), Department of Computer Science and Engineering, Daffodil International University, Dhaka-1341, Bangladesh.

Faculty of Science and Technology, Charles Darwin University, Casuarina, NT 0909 Australia.

出版信息

J Healthc Inform Res. 2025 Jan 3;9(1):1-40. doi: 10.1007/s41666-024-00182-5. eCollection 2025 Mar.

Abstract

The identification and early treatment of retinal disease can help to prevent loss of vision. Early diagnosis allows a greater range of treatment options and results in better outcomes. Optical coherence tomography (OCT) is a technology used by ophthalmologists to detect and diagnose certain eye conditions. In this paper, human retinal OCT images are classified into four classes using deep learning. Several image preprocessing techniques are employed to enhance the image quality. An augmentation technique, called generative adversarial network (GAN), is utilized in the Drusen and DME classes to address data imbalance issues, resulting in a total of 130,649 images. A lightweight optimized compact convolutional transformers (OCCT) model is developed by conducting an ablation study on the initial CCT model for categorizing retinal conditions. The proposed OCCT model is compared with two transformer-based models: vision Transformer (ViT) and Swin Transformer. The models are trained and evaluated with 32 × 32 sized images of the GAN-generated enhanced dataset. Additionally, eight transfer learning models are presented with the same input images to compare their performance with the OCCT model. The proposed model's stability is assessed by decreasing the number of training images and evaluating the performance. The OCCT model's accuracy is 97.09%, and it outperforms the two transformer models. The result further indicates that the OCCT model sustains its performance, even if the number of images is reduced.

摘要

视网膜疾病的识别和早期治疗有助于预防视力丧失。早期诊断可提供更多的治疗选择,并带来更好的治疗效果。光学相干断层扫描(OCT)是眼科医生用于检测和诊断某些眼部疾病的技术。在本文中,利用深度学习将人类视网膜OCT图像分为四类。采用了几种图像预处理技术来提高图像质量。在玻璃膜疣和糖尿病性黄斑水肿类别中使用了一种名为生成对抗网络(GAN)的增强技术来解决数据不平衡问题,从而得到总共130649张图像。通过对用于视网膜疾病分类的初始紧凑型卷积变压器(CCT)模型进行消融研究,开发了一种轻量级优化紧凑型卷积变压器(OCCT)模型。将所提出的OCCT模型与两种基于变压器的模型进行比较:视觉变压器(ViT)和Swin变压器。使用GAN生成的增强数据集的32×32大小的图像对这些模型进行训练和评估。此外,还提出了八个具有相同输入图像的迁移学习模型,以将它们的性能与OCCT模型进行比较。通过减少训练图像数量并评估性能来评估所提出模型的稳定性。OCCT模型的准确率为97.09%,优于这两种变压器模型。结果进一步表明,即使图像数量减少,OCCT模型仍能保持其性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43a/11782765/d8d91377f42f/41666_2024_182_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验