Suppr超能文献

使用随机变量选择和高斯朴素贝叶斯分类器对短期洪水事件进行分类:以孟加拉国锡拉杰甘杰区为例

Classification of short-term flood events using stochastic variable selection and Gaussian Naïve Bayes classifier: A case study of Sirajganj district, Bangladesh.

作者信息

Mondal Chandan, Uddin Md Jahir

机构信息

Department of Civil Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.

Office of Planning and Development, Rabindra University, Bangladesh.

出版信息

Heliyon. 2025 Jan 13;11(2):e41941. doi: 10.1016/j.heliyon.2025.e41941. eCollection 2025 Jan 30.

Abstract

Around the world, catastrophes caused by flooding are occurring naturally that cause a great deal of fatalities and financial loss. The loss of life and property can be considerably reduced with precise flood forecasts. The complexity of many flood predicting techniques makes the results difficult to interpret, compromising the process's core goal. This study uses a quick and flexible Gaussian Naïve Bayes (GNB) classifier to categorize eight different years as flooded or non-flooded based on predictor variables obtained via the Mutual Information (MI) technique. During the search, all-sky surface shortwave downward irradiance is identified as the optimum predictor variable out of nineteen stochastic variables, with the highest sensitivity for model accuracy. The model is then validated using four iterations derived from the MAPE of the GNB classification method for Twenty-five percent mean error rates from 4-fold cross-validation indicate that this classification model is suitable for flood forecasting. This high rate of mean error is caused by the short amount of data utilized as training data, as GNB requires huge data records to get effective results. This research could aid in the development and evaluation of hydrological projects in the Sirajganj district.

摘要

在全球范围内,由洪水引发的灾难自然发生,造成了大量人员伤亡和经济损失。精准的洪水预报能够大幅减少生命和财产损失。然而,许多洪水预测技术的复杂性使得结果难以解读,这损害了该过程的核心目标。本研究使用快速灵活的高斯朴素贝叶斯(GNB)分类器,基于通过互信息(MI)技术获得的预测变量,将八个不同年份分类为洪水年份或非洪水年份。在搜索过程中,全天空地表短波向下辐照度在19个随机变量中被确定为最佳预测变量,对模型准确性的敏感性最高。然后,使用从GNB分类方法的平均绝对百分比误差(MAPE)得出的四次迭代对模型进行验证,4折交叉验证得出的25%平均误差率表明该分类模型适用于洪水预报。如此高的平均误差率是由于用作训练数据的数据量较少,因为GNB需要大量数据记录才能获得有效结果。本研究有助于锡拉杰甘杰地区水文项目的开发和评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验