Mathew-Schmitt Sanjana, Oerter Sabrina, Reitenbach Evelin, Gätzner Sabine, Höchner Alevtina, Jahnke Heinz-Georg, Piontek Jörg, Neuhaus Winfried, Brachner Andreas, Metzger Marco, Appelt-Menzel Antje
Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany.
Fraunhofer Institute for Silicate Research ISC, Translational Centre Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany.
Adv Biol (Weinh). 2025 Apr;9(4):e2400442. doi: 10.1002/adbi.202400442. Epub 2025 Feb 6.
Extensively studied blood-brain barrier (BBB) in-vitro models are established on 2D cell culture inserts. However, they do not accurately represent 3D in-vivo microenvironments due to lack of direct neurovascular unit cellular contacts. Here, the establishment and characterization of a self-assembled 3D BBB spheroid model using human-induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (iBCECs) in combination with primary human astrocytes (ACs) and pericytes (PCs) are reported. This investigation compares 3D spheroids with 2D mono-cultured iBCECs derived from two different hiPSC lines and two differentiation strategies. It is observed that spheroid properties vary depending on the differentiation strategy or type of hiPSC line applied for model generation. However, spheroids demonstrate in-vivo like tight junction ultrastructure and, in comparison to 2D models, higher transcript expression of BBB specific genes. Furthermore, they possess characteristic barrier integrity, barrier functionality, and protein expression. It is inferred that hiPSC-derived BBB spheroids hold a strong potential as a reliable future BBB in-vitro test system.
广泛研究的血脑屏障(BBB)体外模型是在二维细胞培养插入物上建立的。然而,由于缺乏直接的神经血管单元细胞接触,它们不能准确代表三维体内微环境。在此,报告了一种使用人诱导多能干细胞(hiPSC)衍生的脑微血管内皮样细胞(iBCEC)与原代人星形胶质细胞(AC)和周细胞(PC)组合的自组装三维血脑屏障球体模型的建立和表征。本研究比较了三维球体与源自两种不同hiPSC系和两种分化策略的二维单培养iBCEC。观察到球体特性因用于模型生成的分化策略或hiPSC系类型而异。然而,球体表现出类似体内的紧密连接超微结构,并且与二维模型相比,血脑屏障特异性基因的转录表达更高。此外,它们具有特征性的屏障完整性、屏障功能和蛋白质表达。据推断,hiPSC衍生的血脑屏障球体作为一种可靠的未来血脑屏障体外测试系统具有很大的潜力。