Suppr超能文献

糖尿病肾病中糖酵解相关诊断标志物的识别与验证:一项基于整合机器学习和单细胞测序的研究

Identification and validation of glycolysis-related diagnostic signatures in diabetic nephropathy: a study based on integrative machine learning and single-cell sequence.

作者信息

Wu Xiaoyin, Guo Buyu, Chang Xingyu, Yang Yuxuan, Liu Qianqian, Liu Jiahui, Yang Yichen, Zhang Kang, Ma Yumei, Fu Songbo

机构信息

School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.

The First Clinical Medical College, Lanzhou University, Lanzhou, China.

出版信息

Front Immunol. 2025 Jan 23;15:1427626. doi: 10.3389/fimmu.2024.1427626. eCollection 2024.

Abstract

BACKGROUND

Diabetic nephropathy (DN) is a complication of systemic microvascular disease in diabetes mellitus. Abnormal glycolysis has emerged as a potential factor for chronic renal dysfunction in DN. The current lack of reliable predictive biomarkers hinders early diagnosis and personalized therapy.

METHODS

Transcriptomic profiles of DN samples and controls were extracted from GEO databases. Differentially expressed genes (DEGs) and their functional enrichments were identified. Glycolysis-related genes (GRGs) were selected by combining DEGs, weighted gene co-expression network, and glycolysis candidate genes. We established a diagnostic signature termed GScore via integrative machine learning framework. The diagnostic efficacy was evaluated by decision curve and calibration curve. Single-cell RNA sequence data was used to identify cell subtypes and interactive signals. The cMAP database was used to find potential therapeutic agents targeting GScore for DN. The expression levels of diagnostic signatures were verified .

RESULTS

Through the 108 combinations of machine learning algorithms, we selected 12 diagnostic signatures, including CD163, CYBB, ELF3, FCN1, PROM1, GPR65, LCN2, LTF, S100A4, SOX4, TGFB1 and TNFAIP8. Based on them, an integrative model named GScore was established for predicting DN onset and stratifying clinical risk. We observed distinct biological characteristics and immunological microenvironment states between the high-risk and low-risk groups. GScore was significantly associated with neutrophils and non-classical monocytes. Potential agents including esmolol, estradiol, ganciclovir, and felbamate, targeting the 12 diagnostic signatures were identified. , ELF3, LCN2 and CD163 were induced in high glucose-induced HK-2 cell lines.

CONCLUSION

An integrative machine learning frame established a novel diagnostic signature using glycolysis-related genes. This study provides a new direction for the early diagnosis and treatment of DN.

摘要

背景

糖尿病肾病(DN)是糖尿病系统性微血管疾病的一种并发症。糖酵解异常已成为DN慢性肾功能障碍的一个潜在因素。目前缺乏可靠的预测生物标志物阻碍了早期诊断和个性化治疗。

方法

从GEO数据库中提取DN样本和对照的转录组图谱。鉴定差异表达基因(DEG)及其功能富集情况。通过结合DEG、加权基因共表达网络和糖酵解候选基因来选择糖酵解相关基因(GRG)。我们通过综合机器学习框架建立了一个名为GScore的诊断特征。通过决策曲线和校准曲线评估诊断效能。使用单细胞RNA序列数据来识别细胞亚型和相互作用信号。利用cMAP数据库寻找针对DN的靶向GScore的潜在治疗药物。验证诊断特征的表达水平。

结果

通过108种机器学习算法组合,我们选择了12个诊断特征,包括CD163、CYBB、ELF3、FCN1、PROM1、GPR65、LCN2、LTF、S100A4、SOX4、TGFB1和TNFAIP8。基于这些特征,建立了一个名为GScore的综合模型,用于预测DN发病和分层临床风险。我们观察到高风险组和低风险组之间有明显不同的生物学特征和免疫微环境状态。GScore与中性粒细胞和非经典单核细胞显著相关。确定了包括艾司洛尔、雌二醇、更昔洛韦和非氨酯在内的靶向这12个诊断特征的潜在药物。在高糖诱导的HK-2细胞系中诱导了ELF3、LCN2和CD163。

结论

一个综合机器学习框架利用糖酵解相关基因建立了一种新的诊断特征。本研究为DN的早期诊断和治疗提供了新方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e86/11798943/b7191ec9505d/fimmu-15-1427626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验