Suppr超能文献

使用预训练视觉模型和双文本解码器对肺细胞学图像的细胞学发现进行自动描述生成:初步研究

Automated Description Generation of Cytologic Findings for Lung Cytological Images Using a Pretrained Vision Model and Dual Text Decoders: Preliminary Study.

作者信息

Teramoto Atsushi, Michiba Ayano, Kiriyama Yuka, Tsukamoto Tetsuya, Imaizumi Kazuyoshi, Fujita Hiroshi

机构信息

Faculty of Information Engineering, Meijo University, Nagoya, Japan.

School of Medicine, Fujita Health University, Toyoake, Japan.

出版信息

Cytopathology. 2025 May;36(3):240-249. doi: 10.1111/cyt.13474. Epub 2025 Feb 7.

Abstract

OBJECTIVE

Cytology plays a crucial role in lung cancer diagnosis. Pulmonary cytology involves cell morphological characterisation in the specimen and reporting the corresponding findings, which are extremely burdensome tasks. In this study, we propose a technique to generate cytologic findings from for cytologic images to assist in the reporting of pulmonary cytology.

METHODS

For this study, 801 patch images were retrieved using cytology specimens collected from 206 patients; the findings were assigned to each image as a dataset for generating cytologic findings. The proposed method consists of a vision model and dual text decoders. In the former, a convolutional neural network (CNN) is used to classify a given image as benign or malignant, and the features related to the image are extracted from the intermediate layer. Independent text decoders for benign and malignant cells are prepared for text generation, and the text decoder switches according to the CNN classification results. The text decoder is configured using a transformer that uses the features obtained from the CNN for generating findings.

RESULTS

The sensitivity and specificity were 100% and 96.4%, respectively, for automated benign and malignant case classification, and the saliency map indicated characteristic benign and malignant areas. The grammar and style of the generated texts were confirmed correct, achieving a BLEU-4 score of 0.828, reflecting high degree of agreement with the gold standard, outperforming existing LLM-based image-captioning methods and single-text-decoder ablation model.

CONCLUSION

Experimental results indicate that the proposed method is useful for pulmonary cytology classification and generation of cytologic findings.

摘要

目的

细胞学在肺癌诊断中起着至关重要的作用。肺部细胞学涉及对标本中的细胞形态特征进行表征并报告相应结果,这些都是极其繁重的任务。在本研究中,我们提出了一种从细胞学图像生成细胞学结果的技术,以协助肺部细胞学报告。

方法

在本研究中,使用从206例患者收集的细胞学标本检索了801个补丁图像;将结果分配给每个图像作为生成细胞学结果的数据集。所提出的方法由一个视觉模型和双文本解码器组成。在前者中,使用卷积神经网络(CNN)将给定图像分类为良性或恶性,并从中间层提取与该图像相关的特征。为良性和恶性细胞准备独立的文本解码器用于文本生成,文本解码器根据CNN分类结果进行切换。文本解码器使用一个变换器进行配置,该变换器使用从CNN获得的特征来生成结果。

结果

自动良性和恶性病例分类的灵敏度和特异度分别为100%和96.4%,显著性图显示了特征性的良性和恶性区域。生成文本的语法和风格经确认正确,BLEU-4分数达到0.828,表明与金标准高度一致,优于现有的基于大语言模型的图像字幕方法和单文本解码器消融模型。

结论

实验结果表明,所提出的方法对于肺部细胞学分类和细胞学结果的生成是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验