文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的肺癌细胞学图像自动识别与分割

Automated recognition and segmentation of lung cancer cytological images based on deep learning.

作者信息

Wang Qingyang, Luo Yazhi, Zhao Ying, Wang Shuhao, Niu Yiru, Di Jinxi, Guo Jia, Lan Guorong, Yang Lei, Mao Yu Shan, Tu Yuan, Zhong Dingrong, Zhang Pei

机构信息

Department of Pathology, Chengdu Second People's Hospital, Sichuan, China.

Department of Pathology, China-Japan Friendship Hospital, Beijing, China.

出版信息

PLoS One. 2025 Jan 31;20(1):e0317996. doi: 10.1371/journal.pone.0317996. eCollection 2025.


DOI:10.1371/journal.pone.0317996
PMID:39888907
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11785301/
Abstract

Compared with histological examination of lung cancer, cytology is less invasive and provides better preservation of complete morphology and detail. However, traditional cytological diagnosis requires an experienced pathologist to evaluate all sections individually under a microscope, which is a time-consuming process with low interobserver consistency. With the development of deep neural networks, the You Only Look Once (YOLO) object-detection model has been recognized for its impressive speed and accuracy. Thus, in this study, we developed a model for intraoperative cytological segmentation of pulmonary lesions based on the YOLOv8 algorithm, which labels each instance by segmenting the image at the pixel level. The model achieved a mean pixel accuracy and mean intersection over union of 0.80 and 0.70, respectively, on the test set. At the image level, the accuracy and area under the receiver operating characteristic curve values for malignant and benign (or normal) lesions were 91.0% and 0.90, respectively. In addition, the model was deemed suitable for diagnosing pleural fluid cytology and bronchoalveolar lavage fluid cytology images. The model predictions were strongly correlated with pathologist diagnoses and the gold standard, indicating the model's ability to make clinical-level decisions during initial diagnosis. Thus, the proposed method is useful for rapidly localizing lung cancer cells based on microscopic images and outputting image interpretation results.

摘要

与肺癌组织学检查相比,细胞学检查侵入性较小,能更好地保留完整形态和细节。然而,传统的细胞学诊断需要经验丰富的病理学家在显微镜下逐个评估所有切片,这是一个耗时的过程,观察者间一致性较低。随着深度神经网络的发展,你只看一次(YOLO)目标检测模型因其惊人的速度和准确性而得到认可。因此,在本研究中,我们基于YOLOv8算法开发了一种用于肺部病变术中细胞学分割的模型,该模型通过在像素级别分割图像来标记每个实例。在测试集上,该模型的平均像素准确率和平均交并比分别达到了0.80和0.70。在图像层面,恶性和良性(或正常)病变的准确率和受试者工作特征曲线下面积值分别为91.0%和0.90。此外,该模型被认为适用于诊断胸水细胞学和支气管肺泡灌洗液体细胞学图像。模型预测结果与病理学家诊断及金标准高度相关,表明该模型在初步诊断时具有做出临床水平决策的能力。因此,所提出的方法有助于基于微观图像快速定位肺癌细胞并输出图像解读结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/22b9b1aaa2bd/pone.0317996.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/229963ef0dca/pone.0317996.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/70d78b6b061d/pone.0317996.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/27481d79dc41/pone.0317996.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/f10defecf6b7/pone.0317996.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/d88c3dd45cef/pone.0317996.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/22b9b1aaa2bd/pone.0317996.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/229963ef0dca/pone.0317996.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/70d78b6b061d/pone.0317996.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/27481d79dc41/pone.0317996.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/f10defecf6b7/pone.0317996.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/d88c3dd45cef/pone.0317996.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b6/11785301/22b9b1aaa2bd/pone.0317996.g006.jpg

相似文献

[1]
Automated recognition and segmentation of lung cancer cytological images based on deep learning.

PLoS One. 2025-1-31

[2]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[3]
Automated interpretation of PET/CT images in patients with lung cancer.

Nucl Med Commun. 2007-2

[4]
Deep convolutional neural network-based classification of cancer cells on cytological pleural effusion images.

Mod Pathol. 2022-5

[5]
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning.

Sci Rep. 2021-10-13

[6]
Automated interpretation and analysis of bronchoalveolar lavage fluid.

Int J Med Inform. 2022-1

[7]
Automated Description Generation of Cytologic Findings for Lung Cytological Images Using a Pretrained Vision Model and Dual Text Decoders: Preliminary Study.

Cytopathology. 2025-5

[8]
Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks.

PLoS One. 2020-3-5

[9]
Artificial Intelligence Recognition Model Using Liquid-Based Cytology Images to Discriminate Malignancy and Histological Types of Non-Small-Cell Lung Cancer.

Pathobiology. 2025

[10]
Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.

IEEE J Transl Eng Health Med. 2022

引用本文的文献

[1]
Hybrid feature fusion in cervical cancer cytology: a novel dual-module approach framework for lesion detection and classification using radiomics, deep learning, and reproducibility.

Front Oncol. 2025-8-18

本文引用的文献

[1]
Detection and Segmentation of Radiolucent Lesions in the Lower Jaw on Panoramic Radiographs Using Deep Neural Networks.

Medicina (Kaunas). 2023-12-9

[2]
An Improved Microaneurysm Detection Model Based on SwinIR and YOLOv8.

Bioengineering (Basel). 2023-12-8

[3]
Deep learning-based diagnosis of lung cancer using a nationwide respiratory cytology image set: improving accuracy and inter-observer variability.

Am J Cancer Res. 2023-11-15

[4]
Real-Time Obstacle Detection with YOLOv8 in a WSN Using UAV Aerial Photography.

J Imaging. 2023-10-10

[5]
YOLOv8-Peas: a lightweight drought tolerance method for peas based on seed germination vigor.

Front Plant Sci. 2023-9-28

[6]
Localization of Colorectal Cancer Lesions in Contrast-Computed Tomography Images via a Deep Learning Approach.

Bioengineering (Basel). 2023-8-17

[7]
Segmentation and counting of wheat spike grains based on deep learning and textural feature.

Plant Methods. 2023-8-1

[8]
Modified you-only-look-once model for joint source detection and azimuth estimation in a multi-interfering underwater acoustic environment.

J Acoust Soc Am. 2023-4-1

[9]
Deep Learning-Based Screening of Urothelial Carcinoma in Whole Slide Images of Liquid-Based Cytology Urine Specimens.

Cancers (Basel). 2022-12-30

[10]
Automated segmentation of lungs and lung tumors in mouse micro-CT scans.

iScience. 2022-12-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索