Suppr超能文献

探索预后精准度:一种用于肺癌恶性胸腔积液的列线图方法

Exploring prognostic precision: a nomogram approach for malignant pleural effusion in lung cancer.

作者信息

Jiang Yongjie, Hu Xin, Heibi Yiluo, Wu Hang, Deng Taibing, Jiang Li

机构信息

Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

Department of Respiratory and Critical Care Medicine, Guang'an People's Hospital, Guang'an, China.

出版信息

BMC Cancer. 2025 Feb 10;25(1):227. doi: 10.1186/s12885-025-13632-z.

Abstract

BACKGROUND

Patients with lung cancer and malignant pleural effusion (MPE) often have poor prognoses. Accurate prognostic tools are needed to guide interventions and improve outcomes.

METHODS

We retrospectively analyzed clinical and imaging data from MPE patients at two medical centers. A nomogram was developed and externally validated. Clinical and imaging features were refined using least absolute shrinkage and selection operator (LASSO), and independent predictors were identified via multivariate logistic regression. Predictors were integrated into the nomogram, whose predictive performance, calibration, and clinical utility were evaluated using statistical analyses, including receiver operating characteristic (ROC) curves, calibration curves, Hosmer-Lemeshow tests, and decision curve analysis (DCA). Survival curves illustrated prognostic differences among risk groups.

RESULTS

The final nomogram included five variables: Lactate Dehydrogenase (LDH) levels in pleural fluid, clarity of pleural effusion, treatment regimen, presence of pericardial effusion, and total volume of pleural effusion. In both cohorts, the nomogram demonstrated strong predictive accuracy (Area Under the Curve (AUC): 0.929 and 0.941, respectively) and excellent calibration (Hosmer-Lemeshow test p-values: 0.944 and 0.425, respectively). DCA confirmed the nomogram's clinical utility. Risk stratification revealed significant survival disparities among patients.

CONCLUSION

Our nomogram accurately predicts the prognosis of lung cancer patients with MPE at initial diagnosis, incorporating key variables such as LDH levels in pleural fluid, clarity of pleural effusion, treatment regimen, pericardial effusion, and total volume of pleural effusion. Its robust predictive performance, calibration, and clinical utility support its use in guiding clinical decision-making for this patient population.

摘要

背景

肺癌合并恶性胸腔积液(MPE)的患者预后往往较差。需要准确的预后工具来指导干预措施并改善预后。

方法

我们回顾性分析了两个医疗中心MPE患者的临床和影像数据。构建了一个列线图并进行外部验证。使用最小绝对收缩和选择算子(LASSO)对临床和影像特征进行优化,并通过多因素逻辑回归确定独立预测因子。将预测因子整合到列线图中,使用包括受试者工作特征(ROC)曲线、校准曲线、Hosmer-Lemeshow检验和决策曲线分析(DCA)在内的统计分析评估其预测性能、校准情况和临床实用性。生存曲线说明了风险组之间的预后差异。

结果

最终的列线图包括五个变量:胸水乳酸脱氢酶(LDH)水平、胸腔积液的清晰度、治疗方案、心包积液的存在情况以及胸腔积液总量。在两个队列中,列线图均显示出强大的预测准确性(曲线下面积(AUC)分别为0.929和0.941)和良好的校准(Hosmer-Lemeshow检验p值分别为0.944和0.425)。DCA证实了列线图的临床实用性。风险分层显示患者之间存在显著的生存差异。

结论

我们的列线图在肺癌合并MPE患者初诊时准确预测其预后,纳入了诸如胸水LDH水平、胸腔积液的清晰度、治疗方案、心包积液和胸腔积液总量等关键变量。其强大的预测性能、校准情况和临床实用性支持将其用于指导该患者群体的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/443f/11808993/75cc3c9cb136/12885_2025_13632_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验