Suppr超能文献

利用临床指标和血清金属浓度开发一种诊断算法以确定恶性胸腔积液。

Development of a diagnostic algorithm to ascertain malignant pleural effusion utilizing clinical indicators and serum metal concentrations.

作者信息

Ji Jinling, Shi Ting, Yan Lei, Wang Kai, Jiang Kun, Jiang Yuzhang, Pan Shengnan, Yu Yabin, Li Chang

机构信息

Department of Medical laboratory, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.

Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.

出版信息

Front Oncol. 2024 Jun 13;14:1431318. doi: 10.3389/fonc.2024.1431318. eCollection 2024.

Abstract

BACKGROUND

Malignant pleural effusion (MPE) is prevalent among cancer patients, indicating pleural metastasis and predicting poor prognosis. However, accurately identifying MPE in clinical settings is challenging. The aim of this study was to establish an innovative nomogram-derived model based on clinical indicators and serum metal ion levels to identify MPE.

METHODS

From July 2020 to May 2022, 428 patients diagnosed with pleural effusion (PE) were consecutively recruited. Comprehensive demographic details, clinical symptoms, imaging data, pathological information, and laboratory results, including serum metal ion levels, were systematically collected. The nomogram was created by incorporating the most significant predictors identified through LASSO and multivariate logistic regression analysis. The predictors were assigned weighted points based on their respective regression coefficients, allowing for the calculation of a total score that corresponds to the probability of MPE. Internal validation using bootstrapping techniques assessed the nomogram's performance, including calibration, discrimination, and clinical applicability.

RESULTS

Seven key variables were identified using LASSO regression and multiple regression analysis, including dyspnea, fever, X-ray/CT compatible with malignancy, pleural carcinoembryonic antigen(pCEA), serum neuron-specific enolase(sNSE), serum carcinoembryonic antigen(sCEA), and pleural lactate dehydrogenase(pLDH). Internal validation underscored the superior performance of our model (AUC=0.940). Decision curve analysis (DCA) analysis demonstrated substantial net benefit across a probability threshold range > 1%. Additionally, serum calcium and copper levels were significantly higher, while serum zinc levels were significantly lower in MPE patients compared to benign pleural effusion (BPE) patients.

CONCLUSION

This study effectively developed a user-friendly and reliable MPE identification model incorporating seven markers, aiding in the classification of PE subtypes in clinical settings. Furthermore, our study highlights the clinical value of serum metal ions in distinguishing malignant pleural effusion from BPE. This significant advancement provides essential tools for physicians to accurately diagnose and treat patients with MPE.

摘要

背景

恶性胸腔积液(MPE)在癌症患者中很常见,提示胸膜转移并预示预后不良。然而,在临床环境中准确识别MPE具有挑战性。本研究的目的是建立一种基于临床指标和血清金属离子水平的创新列线图衍生模型来识别MPE。

方法

从2020年7月至2022年5月,连续招募了428例诊断为胸腔积液(PE)的患者。系统收集了全面的人口统计学细节、临床症状、影像学数据、病理信息和实验室结果,包括血清金属离子水平。通过纳入经LASSO和多变量逻辑回归分析确定的最显著预测因素来创建列线图。根据各自的回归系数为预测因素分配加权分数,从而计算出与MPE概率相对应的总分。使用自助法技术进行内部验证,评估列线图的性能,包括校准、鉴别和临床适用性。

结果

通过LASSO回归和多元回归分析确定了七个关键变量,包括呼吸困难、发热、与恶性肿瘤相符的X线/CT、胸膜癌胚抗原(pCEA)、血清神经元特异性烯醇化酶(sNSE)、血清癌胚抗原(sCEA)和胸膜乳酸脱氢酶(pLDH)。内部验证强调了我们模型的卓越性能(AUC = 0.940)。决策曲线分析(DCA)表明,在概率阈值范围>1%时具有显著的净效益。此外,与良性胸腔积液(BPE)患者相比,MPE患者的血清钙和铜水平显著升高,而血清锌水平显著降低。

结论

本研究有效地开发了一种包含七个标志物的用户友好且可靠的MPE识别模型,有助于在临床环境中对PE亚型进行分类。此外,我们的研究突出了血清金属离子在区分恶性胸腔积液与BPE方面的临床价值。这一重大进展为医生准确诊断和治疗MPE患者提供了重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd62/11208470/df5e3176cdbd/fonc-14-1431318-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验