Suppr超能文献

基于光谱的高熵合金催化剂聚类分析:相较于原子结构的使用,能提供更深入的见解

Spectra-based clustering of high-entropy alloy catalysts: improved insight over use of atomic structure.

作者信息

Li Huirong, Zhou Donglai, Smith Pieter E S, Sharman Edward, Xiao Hengyu, Wang Song, Huang Yan, Jiang Jun

机构信息

State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China

Hefei JiShu Quantum Technology Co. Ltd Hefei 230026 China.

出版信息

Chem Sci. 2025 Feb 10;16(11):4646-4653. doi: 10.1039/d4sc06552b. eCollection 2025 Mar 12.

Abstract

The investigation of material properties based on atomic structure is a commonly used approach. However, in the study of complex systems such as high-entropy alloys, atomic structure not only covers an excessively vast chemical space, but also has an imprecise correspondence to chemical properties. Herein, we present a label-free machine learning (ML) model based on physics-based spectroscopic descriptors to study the catalytic properties of AgAuCuPdPt high-entropy alloy catalysts. Even if the atomic structures of two such alloys are different, these alloys may have similar catalytic properties if their spectral characteristics match closely. One cluster with the strongest CO adsorption exhibited high selectivity for C product generation, indicating that the spectra-based ML model can provide deeper chemical insight than one based on atomic structure. Moreover, such a model can be extended to other systems with consistent results, thus demonstrating its transferability and versatility. This not only underscores the potential of spectral analysis in identifying high-performance alloy catalysts, but facilitates the formation of a new spectra-based modeling approach and research theory in materials science.

摘要

基于原子结构研究材料特性是一种常用方法。然而,在诸如高熵合金等复杂体系的研究中,原子结构不仅涵盖过于广阔的化学空间,而且与化学性质的对应关系并不精确。在此,我们提出一种基于物理光谱描述符的无标记机器学习(ML)模型,用于研究AgAuCuPdPt高熵合金催化剂的催化性能。即使两种此类合金的原子结构不同,但如果它们的光谱特征紧密匹配,这些合金可能具有相似的催化性能。一个具有最强CO吸附的簇对C产物生成表现出高选择性,这表明基于光谱的ML模型比基于原子结构的模型能提供更深入的化学见解。此外,这样的模型可以扩展到其他体系并得到一致结果,从而证明了其可转移性和通用性。这不仅突出了光谱分析在识别高性能合金催化剂方面的潜力,而且有助于在材料科学中形成一种基于光谱的新建模方法和研究理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c3d/11901232/18a6e404a76c/d4sc06552b-f1.jpg

相似文献

1
Spectra-based clustering of high-entropy alloy catalysts: improved insight over use of atomic structure.
Chem Sci. 2025 Feb 10;16(11):4646-4653. doi: 10.1039/d4sc06552b. eCollection 2025 Mar 12.
3
Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO Hydrogenation to Methanol.
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56151-56163. doi: 10.1021/acsami.1c16696. Epub 2021 Nov 17.
4
Alloy Catalysts for Electrocatalytic CO Reduction.
Small Methods. 2023 Sep;7(9):e2300482. doi: 10.1002/smtd.202300482. Epub 2023 May 31.
5
Optimization of High-Entropy Alloy Catalyst for Ammonia Decomposition and Ammonia Synthesis.
J Phys Chem Lett. 2021 Jun 3;12(21):5185-5192. doi: 10.1021/acs.jpclett.1c01242. Epub 2021 May 26.
6
VASE: A High-Entropy Alloy Short-Range Order Structural Descriptor for Machine Learning.
J Chem Theory Comput. 2024 Dec 24;20(24):11082-11092. doi: 10.1021/acs.jctc.4c00340. Epub 2024 Jul 24.
7
Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors.
Adv Sci (Weinh). 2022 Apr;9(12):e2106043. doi: 10.1002/advs.202106043. Epub 2022 Mar 1.
8
Machine Learning Assisted Exploration of High Entropy Alloy-Based Catalysts for Selective CO Reduction to Methanol.
J Phys Chem Lett. 2022 Jun 30;13(25):5991-6002. doi: 10.1021/acs.jpclett.2c00929. Epub 2022 Jun 23.
10
Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
Acc Chem Res. 2017 Apr 18;50(4):787-795. doi: 10.1021/acs.accounts.6b00596. Epub 2017 Feb 16.

本文引用的文献

2
Optimization strategies of high-entropy alloys for electrocatalytic applications.
Chem Sci. 2023 Oct 19;14(45):12850-12868. doi: 10.1039/d3sc04962k. eCollection 2023 Nov 22.
3
Catalytic Structure Design by AI Generating with Spectroscopic Descriptors.
J Am Chem Soc. 2023 Dec 13;145(49):26817-26823. doi: 10.1021/jacs.3c09299. Epub 2023 Nov 29.
5
Enhanced CO Affinity on Cu Facilitates CO Electroreduction toward Multi-Carbon Products.
Small. 2023 Sep;19(39):e2302530. doi: 10.1002/smll.202302530. Epub 2023 May 31.
6
Band Gap Narrowing in a High-Entropy Spinel Oxide Semiconductor for Enhanced Oxygen Evolution Catalysis.
J Am Chem Soc. 2023 Mar 29;145(12):6753-6761. doi: 10.1021/jacs.2c12887. Epub 2023 Mar 15.
7
A crystal growth kinetics guided Cu aerogel for highly efficient CO electrolysis to C alcohols.
Chem Sci. 2022 Dec 6;14(2):310-316. doi: 10.1039/d2sc04961a. eCollection 2023 Jan 4.
8
High-Entropy Alloy Aerogels: A New Platform for Carbon Dioxide Reduction.
Adv Mater. 2023 Jan;35(2):e2209242. doi: 10.1002/adma.202209242. Epub 2022 Nov 20.
9
Quantitatively Determining Surface-Adsorbate Properties from Vibrational Spectroscopy with Interpretable Machine Learning.
J Am Chem Soc. 2022 Sep 7;144(35):16069-16076. doi: 10.1021/jacs.2c06288. Epub 2022 Aug 24.
10
Atomically Dispersed Indium-Copper Dual-Metal Active Sites Promoting C-C Coupling for CO Photoreduction to Ethanol.
Angew Chem Int Ed Engl. 2022 Oct 4;61(40):e202208904. doi: 10.1002/anie.202208904. Epub 2022 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验