Suppr超能文献

用于改进疾病自动分类的真实眼底照片生成

Realistic fundus photograph generation for improving automated disease classification.

作者信息

Pandey Prashant U, Micieli Jonathan A, Ong Tone Stephan, Eng Kenneth T, Kertes Peter J, Wong Jovi C Y

机构信息

School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.

Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.

出版信息

Br J Ophthalmol. 2025 Jun 23;109(7):791-798. doi: 10.1136/bjo-2024-326122.

Abstract

AIMS

This study aims to investigate whether denoising diffusion probabilistic models (DDPMs) could generate realistic retinal images, and if they could be used to improve the performance of a deep convolutional neural network (CNN) ensemble for multiple retinal disease classification, which was previously shown to outperform human experts.

METHODS

We trained DDPMs to generate retinal fundus images representing diabetic retinopathy, age-related macular degeneration, glaucoma or normal eyes. Eight board-certified ophthalmologists evaluated 96 test images to assess the realism of generated images and classified them based on disease labels. Subsequently, between 100 and 1000 generated images were employed to augment training of deep convolutional ensembles for classifying retinal disease. We measured the accuracy of ophthalmologists in correctly identifying real and generated images. We also measured the classification accuracy, F-score and area under the receiver operating curve of a trained CNN in classifying retinal diseases from a test set of 100 fundus images.

RESULTS

Ophthalmologists exhibited a mean accuracy of 61.1% (range: 51.0%-68.8%) in differentiating real and generated images. Augmenting the training set with 238 generated images in the smallest class statistically significantly improved the F-score and accuracy by 5.3% and 5.8%, respectively (p<0.01) in a retinal disease classification task, compared with a baseline model trained only with real images.

CONCLUSIONS

Latent diffusion models generated highly realistic retinal images, as validated by human experts. Adding generated images to the training set improved performance of a CNN ensemble without requiring additional real patient data.

摘要

目的

本研究旨在调查去噪扩散概率模型(DDPM)是否能够生成逼真的视网膜图像,以及它们是否可用于提高深度卷积神经网络(CNN)集成模型在多种视网膜疾病分类中的性能,该集成模型先前已被证明优于人类专家。

方法

我们训练了DDPM以生成代表糖尿病视网膜病变、年龄相关性黄斑变性、青光眼或正常眼睛的眼底图像。八位获得董事会认证的眼科医生评估了96张测试图像,以评估生成图像的逼真程度,并根据疾病标签对其进行分类。随后,使用100至1000张生成的图像来增强用于视网膜疾病分类的深度卷积集成模型的训练。我们测量了眼科医生正确识别真实图像和生成图像的准确率。我们还测量了经过训练的CNN在对100张眼底图像的测试集中进行视网膜疾病分类时的分类准确率、F分数和受试者操作特征曲线下面积。

结果

眼科医生在区分真实图像和生成图像方面的平均准确率为61.1%(范围:51.0%-68.8%)。与仅使用真实图像训练的基线模型相比,在视网膜疾病分类任务中,用最小类别中的238张生成图像扩充训练集在统计学上显著提高了F分数和准确率,分别提高了5.3%和5.8%(p<0.01)。

结论

潜在扩散模型生成了高度逼真的视网膜图像,这得到了人类专家的验证。在训练集中添加生成的图像可提高CNN集成模型的性能,而无需额外的真实患者数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a59a/12229059/0471768b7a04/bjo-109-7-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验