Suppr超能文献

卵巢癌的代谢指纹图谱:一种采用基于血浆细胞外囊泡的代谢组学和机器学习算法的新型诊断策略。

A metabolic fingerprint of ovarian cancer: a novel diagnostic strategy employing plasma EV-based metabolomics and machine learning algorithms.

作者信息

Long Fei, Pu XingYu, Wang Xin, Ma DongXue, Gao ShanHu, Shi Jun, Zhong XiaoCui, Ran Rui, Wang LianLian, Chen Zhu, Yang Yang, Cannon Richard D, Han Ting-Li

机构信息

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.

Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China.

出版信息

J Ovarian Res. 2025 Feb 12;18(1):26. doi: 10.1186/s13048-025-01590-w.

Abstract

Ovarian cancer (OC) is the third most common malignant tumor of women and is accompanied by an alteration of systemic metabolism. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for OC diagnosis. EVs, nanosized extracellular vesicles found in the blood, have been proposed as promising biomarkers for liquid biopsies. In this study we recruited 37 OC patients, 22 benign ovarian tumor (BE) patients, and 46 clinically healthy control patients (CON). Plasma EVs were purified from blood samples and sensitive thermal separation probe-based mass spectrometry analysis using a global untargeted metabolic profiling strategy was employed to characterize the metabolite fingerprints. Uniform manifold approximation and projection (UMAP) analysis demonstrated a distinct separation of EVs among the three groups. We screened for diagnostic biomarkers from plasma EV metabolites using seven machine learning algorithms, including artificial neural network (ANN), decision tree (DT), K nearest neighbor (KNN), logistics regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM). For the OC-CON comparison, the highest AUC values were found for RF (0.91), ANN (0.90) and NB (0.90), with the F1-scores of 0.88, 0.83, and 0.76 respectively. For the OC-BE comparison, SVM (0.94), RF (0.86), and KNN (0.86) gave the highest AUCs, with F1-scores of 0.80, 0.80, and 0.91 respectively. A total of 19 and 158 metabolic features exhibited significant differences (FC = 1.5, q < 0.01) in the OC vs BE and OC vs CON comparisons, respectively. Notably, the quantities of 9-octadecenamide and 1,4-methanobenzocyclodecene were significantly elevated, while maltol showed a significant reduction in the OC group compared to the BE group. When comparing the OC group to the CON group, the concentrations of 4-amino-furazan-3-carboxylic acid 2-hydroxy-4-methoxybenzaldehyde, N-phenylethyl, and 4-morpholineethanamine were significantly elevated, while the remaining metabolites, including hydrazine and pyridine sulfonamide, were reduced, in the OC group. The metabolites showing different abundancies are associated with cancer-related mutations, immune responses, and metabolic reprogramming. We demonstrate that the RF algorithm, combined with sensitive thermal separation probe-based mass spectrometry analysis of plasma EVs, can effectively identify OC patients with good accuracy. Thus, our study has shortlisted a set of potential biomarkers in plasma EVs, and the proposed approach could serve as a routine prescreening tool for ovarian cancer.

摘要

卵巢癌(OC)是女性中第三常见的恶性肿瘤,并且伴有全身代谢改变。一种能够捕获和检测体液中肿瘤相关生物标志物的液体活检技术在卵巢癌诊断方面具有巨大潜力。细胞外囊泡(EVs)是血液中发现的纳米级细胞外囊泡,已被提议作为液体活检中有前景的生物标志物。在本研究中,我们招募了37例卵巢癌患者、22例良性卵巢肿瘤(BE)患者和46例临床健康对照患者(CON)。从血样中纯化血浆EVs,并采用基于敏感热分离探针的质谱分析结合全局非靶向代谢谱分析策略来表征代谢物指纹图谱。均匀流形近似和投影(UMAP)分析表明三组之间的EVs有明显区分。我们使用七种机器学习算法从血浆EV代谢物中筛选诊断生物标志物,包括人工神经网络(ANN)、决策树(DT)、K近邻(KNN)、逻辑回归(LR)、朴素贝叶斯(NB)、随机森林(RF)和支持向量机(SVM)。对于卵巢癌与对照的比较,RF(0.91)、ANN(0.90)和NB(0.90)的曲线下面积(AUC)值最高,F1分数分别为0.88、0.83和0.76。对于卵巢癌与BE的比较,SVM(0.94)、RF(0.86)和KNN(0.86)的AUC最高,F1分数分别为0.80、0.80和0.91。在卵巢癌与BE以及卵巢癌与对照的比较中,分别有19个和158个代谢特征表现出显著差异(倍数变化[FC] = 1.5,错误发现率校正后的P值[q] < 0.01)。值得注意的是,与BE组相比,9 - 十八碳烯酰胺和1,4 - 亚甲基苯并环癸烯的含量在卵巢癌组中显著升高,而麦芽酚则显著降低。当将卵巢癌组与对照组进行比较时,4 - 氨基 - 呋咱 - 3 - 羧酸、2 - 羟基 - 4 - 甲氧基苯甲醛、N - 苯乙基和4 - 吗啉乙胺在卵巢癌组中的浓度显著升高,而包括肼和吡啶磺酰胺在内的其余代谢物则降低。显示出不同丰度的代谢物与癌症相关突变、免疫反应和代谢重编程有关。我们证明,RF算法结合基于敏感热分离探针的血浆EVs质谱分析,能够有效地准确识别卵巢癌患者。因此,我们的研究筛选出了一组血浆EVs中的潜在生物标志物,并且所提出的方法可作为卵巢癌的常规预筛查工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d04/11823222/f153f73be883/13048_2025_1590_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验